A moiré superlattice formed by stacking two lattice mismatched transition metal dichalcogenide monolayers, functions as a diffusion barrier that affects the energy transport and dynamics of interlayer excitons (electron and hole spatially concentrated in different monolayers). In this work, we experimentally quantify the diffusion barrier experienced by interlayer excitons in hexagonal boron nitride-encapsulated molybdenum diselenide/tungsten diselenide (MoSe2/WSe2) heterostructures with different twist angles. We observe the localization of interlayer excitons at low temperature and the temperature-activated diffusivity as a function of twist angle and hence attribute it to the deep periodic potentials arising from the moiré superlattice. We further support the observations with theoretical calculations, Monte Carlo simulations, and a three-level model that represents the exciton dynamics at various temperatures.

Z. Li, X. Lu, D. F. Cordovilla Leon, Z. Lyu, H. Xie, J. Hou, Y. Lu, X. Guo, A. Kaczmarek, T. Taniguchi, K. Watanabe, L. Zhao, L. Yang, and P. B. Deotare. Interlayer Exciton Transport in MoSe2/WSe2 Heterostructures. ACS Nano 2021 15 (1), 1539-1547

Type of paper:

A moiré superlattice formed by stacking two lattice mismatched transition metal dichalcogenide monolayers, functions as a diffusion barrier that affects the energy transport and dynamics of interlayer excitons (electron and hole spatially concentrated in different monolayers). In this work, we experimentally quantify the diffusion barrier experienc https://pubs.acs.org/doi/10.1021/acsnano.0c08981

© 2021 American Chemical Society

https://doi.org/10.1021/acsnano.0c08981