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The Cubic Scaling Limit

Size Limitations

• ∼ 1000 atoms thanks to
wavelet properties and
efficient parallelization

• for bigger systems
O(N3) dominates in time
and memory

• → need new approach

Nearsightedness

• the behaviour of large systems is short-ranged

• the density matrix, ρ(r, r′), decays exponentially in systems
with a gap

• → can we exploit nearsightedness in large systems?
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Key Quantities for Linear Scaling

Support Functions (SFs)

write KS orbitals as linear
combinations of SFs φα(r):

Ψi(r) = ∑
α

cα
i φα(r)

• localized (∼ 6−8 a0

radius)

• atom-centred

• minimal – 1 SF per H, 4
per C/N/O. . .

• numerical functions –
expanded in wavelets

• quasi-orthogonal

• Γ-point only – real

Density Kernel (K)

define the density matrix ρ:
ρ(r, r′) = ∑

i
fi
∣∣Ψi(r)〉〈Ψi(r′)

∣∣
= ∑

α,β

∣∣∣φα(r)〉K αβ〈φβ(r′)
∣∣∣

Hαβ = 〈φα|Ĥ|φβ〉; Sαβ = 〈φα|φβ〉
E = Tr(KH) ; N = Tr(KS)
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The Algorithm

optimize SFs

atomic
orbitals

optimize K

energy
& forces

Accurate Minimal Basis

• minimize energy wrt both SFs and kernel
(subject to constraints)

• SFs adapt to the environment – minimal,
localized basis with wavelet accuracy

• 3 methods for K – Fermi Operator
Expansion for O (N ), direct minimization
(virtual states), diagonalization

• forces – geometry optimizations, MD
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From Sparsity to Linear Scaling

Sparse Matrices

• strict localization leads to sparse matrices (K truncation)

• crossover depends on size, dimensionality, SF radii. . .

• speed also depends on band gap (can treat metals)

LS-BigDFT: Mohr et al., J. Chem. Phys. 140, 204110 (2014); Mohr et al., Phys. Chem. Chem. Phys. 17, 31360 (2015)
Metals: Mohr et al., J. Nucl. Mater. Energy 15, 64 (2018)
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Exploiting Similarity Between Fragments

Calculation Bottleneck

• SF optimization dominates prefactor

• similar chemical environments→
similar SFs

• can we reuse SFs?

Acccounting for Varying Orientations and Positions

• minimize cost function to find rotation from template:

J (R ) =
1
N

N

∑
a=1
||RS

a −
N

∑
b=1

RabRT
a ||2

• apply accurate and efficient wavelet interpolation scheme
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Molecular Fragment Approach

optimize SFs

template
SFs

optimize K

energy
& forces

Calculation Steps

• template calculation: optimize SFs for isolated fragment

• reformatting: replicate and rototranslate template SFs for
each fragment instance

• full calculation: use fragment SFs as a fixed basis,
optimizing density kernel only
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Applicability of the Fragment Approach I

Effect of Fragment Interactions – Water Dimer

• basis set superposition error at small distances

• increase basis to improve accuracy

• applicability depends on quantity of interest

• → suited to weakly interacting fragments
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Ratcliff, Genovese, Mohr and Deutsch, J. Chem. Phys. 142, 234105 (2015)
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Applicability of the Fragment Approach II

Effect of Distortions – 2CzPN

• use optimized molecule as template

• more distorted fragments→ larger error

• cost function J used to predict accuracy

• → suited to fragments which are not too distorted
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Applicability of the Fragment Approach III

Cluster of Rigid CBP Molecules

• Efrag−Ecubic ' 30 meV/atom

• fragment approach reproduces (occupied) DoS

• ∼5000 atom single point calculation (48 nodes on Archer) –
fragment approach ∼ 7× cheaper than full linear scaling
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Fragment Approach: Beyond Molecules

Finite SiC Nanotube

• use J and onsite overlap matrix to inform setup

• optimize SFs in embedded pseudo-fragments

• also applied to defective graphene

replicate 

support 

functions

xed 

support 

functions

Fragment 

Calculation

Template

Calculation
optimize 

support 

functions

Ratcliff and Genovese, J. Phys.: Condens. Matter 31, 285901 (2019)
Ratcliff and Genovese, In: E. Levchenko, Y. Dappe, G. Ori. (Eds), Springer Series in Materials Science, vol. 296 (2020)
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OLED Simulation Challenge

Simulating Charge Transport

need to calculate parameters like
transfer integrals in a disordered
host-guest material

Typical Procedure

extract pairs of molecules from
morphology and calculate
transfer integrals for each pair

Environmental Effects

BUT the environment can affect
parameters – need large
systems
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Host-Guest OLED

Host-Guest OLED Morphology

• CBP doped with Ir(ppy)3 (∼ 6200 atoms)

• Metropolis Monte Carlo with simulated annealing of rigid
molecules (mimic physical vapor deposition)

• use constrained DFT to introduce net confined charge→
polarization effects for on-site energies
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OLED Charge Transport Parameters

Environmental and Statistical Effects

• disorder→ dispersion in Eon-site and jij
• environment→ shift in Eon-site (- -) cf. isolated molecule (—)

jhole
ij = 〈ψHOMO

i(mol.)

∣∣∣Ĥ ∣∣∣ψHOMO
j(mol.)〉 Ehole

on-site = E+1
tot −E0

tot

6.2 6.4 6.6 6.8 7.0 7.2 7.4
Energy (eV)

guest

pure host

host

Ratcliff et al., J. Chem. Theory Comput. 11, 2077 (2015)
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Towards More Sustainable OLEDs

Ground State of 2CzPN

• current OLEDs rely on Ir, Pt→ unsustainable

• thermally activated delayed fluorescence –
efficient and purely organic, e.g. 2CzPN

• 50 molecule cluster extracted from MD run

MD snapshot: Olivier et al., Phys. Rev. Mater. 1, 075602 (2017)
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TADF and Excited States I

Beyond the Ground State

• need small ∆EST

• mix of charge transfer
and local excitations

CDFT and CT Excitations

• TDDFT – expensive, issues with long range CT

• CDFT – cheap, can treat long range CT excitations

CDFT

Ratcliff, Genovese, Mohr and Deutsch, J. Chem. Phys.
142, 234105 (2015)

MBPT

Duchemin, Deutsch and Blase, Phys. Rev. Lett. 109,
167801 (2012)
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TADF and Excited States II

Charge Transfer vs. Localized Excitations

• CT states – can use (fragment based) spatial constraint

• LE states – impose a constraint between orbitals

CT – Spatial Constraint LE – Orbital Constraint
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Gas Phase CDFT Benchmarks: 2CzPN

Vertical Excitations

• assume pure transition (HOMO→LUMO only)

• use cubic scaling wvfns as basis

• compare excited state approaches with CDFT/PBE

• reference – TDA with tuned range separated functional
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S1 ∆EST ∆EST

2CzPN
CDFT/PBE 3.26 0.24 -
TDDFT/PBE 2.23 0.18 -
TDA/RS1 3.22 0.41 0.24
exp.2 3.19 - 0.31

1. Sun, Zhong and Brédas, J. Chem. Theory
Comput. 11 3851 (2013)

2. Huang et al., J. Chem. Theory Comput. 9 3872
(2013)

Stella, Thapa, Genovese and Ratcliff, in preparation (2020)
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From Cubic Scaling to Multiscale

Across Lengthscales

• extended orbitals→ O
(
N3

)
• exploit locality→ O (N)

• exploit repetition→ ↓ cost O (N)

• larger systems→ increasing complexity

• → how to treat complex systems?
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