Software approach of BigDFT: from modularization to containers. Aiida workflows with PyBigDFT

Augustin Degomme

Laboratoire de Simulation Atomistique - L_Sim

November 12, 2020

Virtual Room
Modularity first

BigDFT-suite: collection of different independent libraries with own build system. Third-party libraries (green) and upstream modules (blue)

 Dependencies expressed easily in the jhbuild-based bundler.

- Lots of possible options
- Very versatile
- Python configuration files can be shared, many provided
- Good or Expert knowledge often required - not very user friendly
Code release and distribution

<table>
<thead>
<tr>
<th>Provide new alternatives to users</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Packaged versions</td>
</tr>
<tr>
<td>• Virtual machines</td>
</tr>
<tr>
<td>• Containers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Which users? Which usages?</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Development</td>
</tr>
<tr>
<td>• HPC</td>
</tr>
<tr>
<td>• Analysis</td>
</tr>
</tbody>
</table>
Requirements

We need

- **System packages** (*bison, flex, cmake,...*)
- **Linear algebra packages** (*blas, lapack, MKL?,...*)
- **Upstream packages** (*libyaml, glib, libffi,...*)
- **Community packages** (*simgrid, ntpoly, libxc,...*)
- **BigDFT packages**

Moreover

- CUDA has to be installed
- The MPI layer should be CUDA-aware (GPUdirect)
- On workstation and frontends we use *jupyter notebooks*
- The compilation instructions are cumbersome. Difficult to control all these things for non-expert developers.
Containers as a possible solution

Our container history

- Development of GPU acceleration for exact exchange with GPUdirect
- Development of PyBigDFT API
- CI

Flavours

- SDK: large, with everything to build, no BigDFT
- runtime: stripped, with bigdft/MPI built from SDK
- Also available on NVidia NGC repository
Containers as a possible solution

Features

• Built using Nvidia HPC container maker toolkit:
• Comes with CUDA/OpenCl, MKL, either MVAPICH2 or OpenMPI, Jupyter server
• Works on non-GPU systems, ARM/x86 platforms, Windows (using WSL2).
• BigDFT libraries with/without vectorized instructions, dynamically selected
• Tested with GPUDirect on singularity and shifter

Example of a running command

nvidia-docker run -it --rm
-v $(pwd):/host_pwd -w /host_pwd
vcr.io/hpc/bigdft:cuda10-1804-mkl
bigdft
Virtual Machine

- BigDFT is part of MaX flagship codes, is available on the Quantum Mobile virtual machine.
- Great for training/schools

Package

- Debian package in the making: Easy to install, less optimized.
- Python package for BigDFT run analysis (futile and PyBigDFT)
SystemCalculator: the CalcJob equivalent

```python
from BigDFT import Calculators as C
from BigDFT import Inputfiles as I
single_point = C.SystemCalculator()
inp = I.Inputfile()
inp.set_xc('LDA')
inp.write_orbitals_on_disk()
log = single_point.run(input=inp, posinp='mol.xyz')
print(log.energy)
```

Dataset: a small equivalent of a WorkChain

```python
from BigDFT import Datasets as D
hgrid_cv = D.Dataset('h_set')
for h in [0.5, 0.45, 0.4, 0.35, 0.3]:
    inp.set_hgrid(h)
    hgrid_cv.append_run(id={'h': h}, input=inp, runner=single_point)
results = hgrid_cv.run()
energs = hgrid_cv.fetch_results(attribute='energy')
```
We have implemented the “traditional” flavour of AiiDA plugin.

```
from BigDFT import AiidaCalculator as A
study = A.AiidaCalculator(code="bigdft@localhost",
    num_machines=1, mpiprocs_per_machine=1,
    omp=1, walltime=3600)
%load_ext jupyternotify
%notify
hgrid_cv.wait()

>>> '0 processes still running'
```

Integrated in PyBigDFT

A technology that makes the notebook a **console** to launch the job and to analyze production data
The console container

AiiDA requirements

- Installation of the database-related packages
- Working on virtual machine (may still interfere with user’s installation/distribution)
- Configuration of the remote machines still to be completed

The Console container

- Install AiiDA, Aiidalab with (Py)BigDFT plugin and analysis tools, Jupyter directly
- No need to install low level layers (MPI, CUDA,…) or BigDFT
- Can dialog with supercomputers where the HPC installation is performed by system’s administrators
- Control center for BigDFT experiments
Benchmarks with Aiida and PyBigDFT (20k atom system)

Next

- Compute hours have been granted on Fugaku. More performance data to follow in the forthcoming months.
- Emulation/tests on SVE architectures
- LibConv benchmarking