
HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

D1.5

Third release of MAX software: Final report on
restructuring, exascale readiness and inter-code

libraries

Stefano Baroni, Ivan Carnimeo, Augustin Degomme, Pietro
Delugas, Stefano de Gironcoli, Andrea Marini, Davide Sangalli,

Daniele Varsano, Fabrizio Ferrari Ruffino, Andrea Ferretti, Alberto
Garcia, Luigi Genovese, Paolo Giannozzi, Anton Kozhevnikov,

Ivan Marri, Nicola Spallanzani, and Daniel Wortmann

Due date of deliverable 31/01/2022 (month 38)
Actual submission date 09/05/2022
Final version 09/05/2022

Lead beneficiary SISSA (participant number 2)
Dissemination level PU - Public

www.max-centre.eu 1

Ref. Ares(2022)3534391 - 09/05/2022

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

Document information
Project acronym MAX
Project full title Materials Design at the Exascale
Research Action Project type European Centre of Excellence in materials model-

ing, simulations and design
EC Grant agreement no. 824143
Project starting/end date 01/12/2018 (month 1) / 31/05/2022 (month 42)
Website www.max-centre.eu
Deliverable no. D1.5

Authors Stefano Baroni, Ivan Carnimeo, Augustin De-
gomme, Pietro Delugas, Stefano de Gironcoli, An-
drea Marini, Davide Sangalli, Daniele Varsano,
Fabrizio Ferrari Ruffino, Andrea Ferretti, Alberto
Garcia, Luigi Genovese, Paolo Giannozzi, Anton
Kozhevnikov, Ivan Marri, Nicola Spallanzani, and
Daniel Wortmann.

To be cited as Baroni et al. (2022): Third release of MAX
software: Final report on restructuring, exascale
readiness and inter-code libraries. Deliverable
D1.5 of the H2020 CoE MaX (final version as of
09/05/2022). EC grant agreement no: 824143,
SISSA, Trieste, Italy.

Disclaimer

This document’s contents are not intended to replace consultation of any applicable legal
sources or the necessary advice of a legal expert, where appropriate. All information in
this document is provided “as is” and no guarantee or warranty is given that the infor-
mation is fit for any particular purpose. The user, therefore, uses the information at its
sole risk and liability. For the avoidance of all doubts, the European Commission has no
liability in respect of this document, which is merely representing the authors’ view.

www.max-centre.eu 2

www.max-centre.eu
www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

Contents

1 Introduction 5

2 Work on the different codes 6
2.1 QUANTUM ESPRESSO . 6

2.1.1 Release Summary . 6
2.1.2 Restructuring in MAX-phase2 7
2.1.3 Exascale readiness . 9

2.2 YAMBO . 10
2.2.1 YAMBO v5.1: Release Summary 10
2.2.2 Code refactoring and modularisation in MAX phase2 13
2.2.3 Software engineering procedures 15
2.2.4 Exascale Readiness . 16

2.3 Siesta . 18
2.3.1 Global achievements in MAX-phase2 18

2.4 BigDFT . 21
2.5 FLEUR . 24

2.5.1 Hybrid functionals in LAPW (LapwLIB) 24
2.5.2 Build process in view of external dependencies 24

2.6 CP2K . 25

3 Libraries 26
3.1 SpFFT . 26
3.2 SPLA . 29
3.3 SIRIUS . 29
3.4 FUTILE library . 31
3.5 PSolver . 32
3.6 LAXlib . 32
3.7 FFTXlib . 32
3.8 KS_Solvers . 32
3.9 XClib . 33
3.10 UPFlib . 33
3.11 xsdtool, qe_h5, and UtilXlib 34
3.12 omm-bundle . 34
3.13 xmlf90 . 34
3.14 LibFDF . 35
3.15 libPSML . 35
3.16 libGridXC . 36

4 Conclusions and ongoing work 37

Acronyms 37

References 39

www.max-centre.eu 3

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

Executive Summary

This report summarizes the restructuring tasks carried out in WP1 in order to prepare
MAX codes for the forthcoming pre- and exa-scale HPC platforms.

The first milestone of this endeavour was reached at the preparation of the Software
Development Plan [1], where we identified the code functionalities that had to be modu-
larised, the data structures to be encapsulated within each module, and the APIs needed
for accessing these data and functionalities. Leveraging this intra-code design work, we
were also able to identify modules that were feasible and profitable to recast as standalone
libraries, eventually redesigning them for an autonomous extra-code reuse.

The work on modularization was practically accomplished by the second year of the
project, when the flagship codes had already acquired their current structure, and most
of the planned libraries had reached the production or final testing phase. While we
had to operate further adjustments in the code structures, D1.3 [2] and D1.4 [3] can be
considered the second milestone of this Work Package.

The last milestone of WP1 deals with making the software architecture of MAX flag-
ship codes robust and resilient against a hardware evolution scenario where multiple and
diverse HPC hardware are expected emerge and be available. The technical details of
the developments –together with the new features in latest releases– are reported in the
code-specific sections of this document. These sections show that, during the last year,
there has been a significant effort for improving the support of heterogeneous computing,
working at the offload of kernels and data-structures on GPGPUs, with a renovated at-
tention to avoiding or removing the usage of instructions sets that were too specific to the
CUDA programming model. Thanks to the previous restructuring work, it was possible
to target and localise most of these activities to the computationally relevant kernels. For
some actions it was instead necessary to introduce offloading instructions in the science-
specific layers of the codes. In these cases, directive-based programming models (such
as openACC or openMP5) are progressively replacing platform or compiler specific
solutions (e.g. CUDA-Fortran). To this purpose, the DevXlib library, designed and de-
veloped within MAX , provides an API and macros abstraction layer to manage different
programming models.

While most of the earlier development on this side was tested only on CUDA cards, in
this last year MAX code developers have started the experimentation of the other accel-
erator cards, that will be used in the forthcoming pre- and (possibly) exascale machines.
The work on this side progresses rapidly, again thanks to the already achieved internal
reorganisation of the codes. In conclusion, this further confirms that the restructuring
of the MAX flagship codes has successfully prepared them for a fast adaptation to the
forthcoming pre-exascale, exascale, and even post-exascale HPC technologies.

www.max-centre.eu 4

http://www.max-centre.eu/sites/default/files/D1.3%20Second%20report%20on%20software%20architecture%20and%20implementation%20planning.pdf
http://www.max-centre.eu/sites/default/files/D1.4_Second%20release%20of%20MaX%20software_Report%20on%20first%20common%20APIs%2C%20data%20structures%20and%20domain-specific%20libraries.pdf
www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

1 Introduction

One of the main targets of MAX-phase-2 is to provide the community with electronic
structures codes that can be promptly ported on new HPC systems, and whose compo-
nents can be easily reassembled to implement new algorithms.

In view of this, WP1 has planned and coordinated the modularisation of the MAX
flagship codes. It has also identified a set of components that could be refactored in
completely standalone libraries, that MAX will eventually distribute as a library bundle.
This restructuring activity is integrated with the other code actions included in WP2 and
WP3. The work in these three WPs is mainly carried through by the same code developer
teams, in close interaction with the HPC specialists involved in WP4. At several stages,
significant feedback and requests come from the other field scientists active in WP5 and
WP6.

The first step in the work of WP1 was the preparation of the code restructuring plan
(software development plan, SDP) and the identification of the libraries that should be
extracted [1]. We documented the progress in the code restructuring in two previous
release reports [4, 3]. At the end of M24 all the codes had almost reached the desired
structure, fulfilling most of the objectives of the plan. In the last year the development
work has been oriented toward consolidating the modularisation, improving and extend-
ing the code portability, and introducing the algorithmic improvements developed in WP3
into the production versions.

For what concerns the preparation of the libraries, their development started just after
their identification in the SDP. The progress and steps in these developments depended
from their starting status. In all cases by M18 we were able to reach at least a proof
of concept version where the implementation code was collected in self-contained units
and provided with a first API prototype. These earlier versions were then progressively
improved by completing the data encapsulation and the interfaces, passing a first phase
as experimental standalone versions (beta stage), ideally followed by the release of the
production versions.

Many of the identified libraries are related to the most computationally intensive
kernels, together with basic and low level functionalities. In some cases they directly
implement the kernels, while in others they provide a common transparent interface to the
(domain specific or general purpose) low level libraries that perform these functionalities.
The MAX libraries have been one of the key instruments during these three years for the
improvement of the performance and portability of our codes.

Together with the use of domain specific libraries, in particular for the plane-wave
codes, the GPU porting made it necessary to include offloading specific code also in the
highest code layers (those closer to the scientific developers). This has caused a few
issues in the organisation of the codes and their data structures. For instance, for some
codes GPU ready versions initially used a separate code base, which was then merged
with the main code base only after mitigating and solving software engineering clashes.
The adoption of the low-level DevXlib library has been instrumental in overcoming
these issues, e.g., in YAMBO and QUANTUM ESPRESSO.

In the following Sections we will first present the specific restructuring of each flag-
ship code. Then, in Section 3 we will present the status of the libraries of the MAX
bundle. We will summarise the status of the flagship codes, their pre- and exascale readi-
ness, and the ongoing and future work in the conclusive section.

www.max-centre.eu 5

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

2 Work on the different codes

2.1 QUANTUM ESPRESSO

In the M24-M36 period, two stable versions, qe-6.8 and qe-7.0, have been released.
They contain most of the refactoring and modularization actions outlined for WP1 [1]
and some of the algorithmic improvements produced by the work in WP3 [2]. In practice,
most of the work done in this year of activity focused on the code portability to GPGPU-
based heterogeneous architectures (also as a result of expected deployment of peta and
pre-exascale machines of EuroHPC). The CUDA-Fortran code QUANTUM ESPRESSO
was merged into the main repository in qe-6.8. In qe-7.0, many of high-level code
sections have been refactored with an openACC management of the accelerated code
regions. This represent a first milestone in the transition of the science-specific code
layers to openACC and openMP-5 (in the next releases) for offloading management.

The adoption of the directive-based offloading avoids code and variables duplication,
improves the clarity and maintainability of the code and reduces the work needed for
porting to GPUs further applications of the QUANTUM ESPRESSO suite. This new
approach has already been extensively used in qe-7.0 for the finalisation of the GPU
version of cp.x and in the development version for the ongoing acceleration of the
linear-response codes.

The possibility to adopt different offloading strategies for the different code regions
is one great advantage provided by the work on modularisation done in previous releases.
In the following we will first briefly present the main changes introduced in the last two
QUANTUM ESPRESSO releases, then summarise the work done for the modularization
and data encapsulation in the last three years, and conclude the section with an overview
of the ongoing and perspective work.

2.1.1 Release Summary

The QUANTUM ESPRESSO release contain numerous contributions from a world-wide
community of scientists and developers.

• New Features in qe-7.0 and qe-6.8

– cp.x version for GPU completed and made more efficient and performing.

– The new solver added to KS_Solver library based on the RMM-DIIS al-
gorithm [5] improves performance and scalability in systems with a large
number of bands.

– Interface with the TRIQS package, for charge self-consistent DFT+DMFT
calculations via Wannier90, added.

– projwfc.x can be used to compute the PDOS in a local basis.

– DFT-D3 dispersion correction parallelized with MPI and openACC.

– Many-Body Dispersion (MBD) correction library.

– New turboMagnon code added to the TDDFPT module.

– New Bethe-Salpeter iterative solver using Direct Screened Interaction method [6]

– Calculation of DORI and of ELF for spin-polarized systems.

www.max-centre.eu 6

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

– Grand-Canonical SCF [7, 8] for constant chemical potential.

– Calculation of spin-current matrix elements [9] for spin Hall conductivity
using Wannier interpolation, in pw2wannier.x

• Important refactoring in qe-7.0 and qe-6.8

– Merger of CUDA-Fortran code into the main trunk.

– Extension of the modularization and encapsulation of pseudopotential related
functionalities into the upflib library.

– openACC offloading enabled in qe-7.0 and completion of the first step of
the transition of PW and CPV code bases to the directive-based model.

– Offloading of the exchange-correlation routines in XClib completely refac-
tored from CUDA-Fortran to openACC

2.1.2 Restructuring in MAX-phase2

The restructuring of QUANTUM ESPRESSO in these three years was outlined in the
Software Development plan [1]. The goal was to refactor its building blocks in a modular
way, providing them with well-encapsulated data structures and complete APIs sets. The
plan also identified [1] a set of functionalities that could be cast as stand-alone libraries
to be included in the MAX library bundle.

We started the modularisation with the two mathematical libraries LAXlib and
FFTXlib that execute the most compute-intensive parts of the calculations and also
manage the MPI distribution of the largest data structures: 3D-FFT grids (FFTXlib),
and large dense matrices (LAXlib). We also created a lower-level library called UtilXlib
that collects the interfaces and data structures for the MPI management, error handling,
timing and profiling. The lower-level utility-layer was completed later with the adoption
of the DevXlib library for the management of accelerator devices. This lower layer is
instrumental to the complete disentanglement of the libraries and to their portability to
different architectures.

A second part of the work involved the electronic structure field-specific layers that
implemented the algorithms used in quantum-engines and property calculators. Follow-
ing up the work already done in previous years we completed the encapsulation of a lower
layer of electronic structure domain specific functionalities of common use to QUANTUM

ESPRESSO applications. These include

• KS_Solvers, that contains the implementation of several iterative diagonaliza-
tion algorithms;

• Modules, that contains general interfaces and data-structures used in most of the
applications of the suite;

• LR_Modules, that contains interfaces and data structures specific of DFPT appli-
cations.

Out of these three layers, only KS_Solver has been refactored as a standalone
library and included in the MAX library bundle. The other two layers instead provide the
largest part of the common code used by all the quantum-engines and property calculators

www.max-centre.eu 7

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

Figure 1: Code layers in QUANTUM ESPRESSO. The high-level code is constituted by property
calculators and quantum engines. The quantum-engine modules provide all those electronic
structure specific functionalities frequently used in the applications. The mathematical libraries
provide access to compute-intensive functionalities. Low-level utility libraries provide APIs for
the basic management of data, parallelism, timing and errors.

of the suite. We have chosen to target their development and maintenance towards the
general usage within the QUANTUM ESPRESSO platform.

Some parts of Modules of more general interest, have though, been extracted and
refactored as a standalone libraries. The pseudo-potential related functionalities have
been moved to the upflib library developed in collaboration with the YAMBO group.
Also, the routines that compute the exchange-correlation functionals and their derivatives
have been moved to the new XC_lib library.

The organisation of the code has thus reached its final aspect at the end of the sec-
ond year. Its layered structure has been already described in [3]. We review here that
description for completeness.

Code structure. We have 4 different layers in the code as depicted in Fig. 1. The
application layer is constituted by partially independent "property calculators":

• PW, containing the pw.x quantum engine for self consistency, plus a set of related
property calculators;

• CPV, containing the cp.x quantum engine for performing Car-Parrinello ab initio
molecular dynamics;

• PP, containing a wide range of post-processing applications;

• atomic, providing an all-electron solver for atomic problems, plus utilities for
generating and testing pseudopotentials and PAW datasets;

www.max-centre.eu 8

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

• PHonon, providing applications for vibrational and dielectric properties of solids
using DFPT;

• TDDFPT, for computation of electronic excitation spectra using TDDFPT;

• HP, computing on-site and inter-site Hubbard correction terms to DFT using DFPT.

• EPW, computing electron-phonon interactions coefficients and related properties.

The application layer depends upon lower-level libraries and interfaces layers:

• A few domain-specific algorithmic modules:

– Modules, a general interface module containing many common functional-
ity calls;

– LR_modules, containing common functionalities for linear-response codes;

– UPFlib, described below in section 3.

– XC_lib, described below in section 3.

• Computation-intensive mathematical Kernels KS_solvers, FFTXlib, LAXlib.

• UtilXlib: a low-level general utility library for environment initialization, tim-
ing, logging and error handling.

The automated build system may be configured either using autoconf or the CMake
platform. The usage of external libraries has been particularly streamlined with the use
of git submodules.

2.1.3 Exascale readiness

The version qe-7.0 has been tested in many of the relevant platforms.
For what concerns homogeneous nodes, the code relies on the efficiency of the soft-

ware stack. Apart from the Fortran compiler few other libraries have in fact significant
impact on the performance. The MPI, FFT and BLAS libraries plus Scalapack or ELPA.
In the last version the impact of the latter ones has been mitigated by the introduction of
the RMM-DIIS iterative solver.

Among heterogeneous CPU + GPGPU systems, the QUANTUM ESPRESSO pro-
duction version supports those equipped with NVIDIA GPU cards. The support of the
other cards (AMD or Intel) is still at a prototype levels. We expect that the support of the
directive-based offloading will be soon improved by all cards and compiler vendors. This
will solve the portability issues for the higher level layers of the code. For what concerns
the mathematical libraries, several projects are currently ongoing. In the currently run-
ning (Jan, 24 to Feb 20) MAX virtual hackathon on AMD cards we are testing the use
of SPfft and a LAXlib interface for the ROCSolver and MAGMA libraries.

The overwhelming memory footprint of calculations with very large number of bands
constitutes a major general issue for the exascale readiness of QUANTUM ESPRESSO.
More work on this side is needed to improve the MPI band parallelization, implementing
the data distribution among the band groups.

www.max-centre.eu 9

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

2.2 YAMBO

During the M24-M36 period (Dec 2020 – Nov 2021), YAMBO v5.0 was released (2nd of
February 2021) and subsequently stabilised with a few updates (from v5.0.1 to v5.0.4).
Most of the changes introduced with version 5.0 were discussed in the previous reports.
Since then, the development of the code mainly followed two directions.

(i) A new release, YAMBO 5.1, has been developed and prepared (including new fea-
tures, further refining the code structure and modularisation, and improving per-
formance and memory footprint). It will be officially made public after the MAX
-YAMBO school of April 2022.

(ii) In parallel, a great part of the work has been focused on further developing the
YAMBO support of GPGPU-based heterogeneous architectures (extending and op-
timising the support of NVIDIA GPUs, but also addressing AMD and INTEL
cards), in view of the deployment of peta, pre-exascale, and exascale machines
of EuroHPC. The GPU porting has involved a significant restructuring of the code,
and has been done exploiting the deviceXlib library and sharing the experi-
ence and success with other MAX codes such as QUANTUM ESPRESSO. It is, at
present, in a dedicated branch (devel-gpu) not yet ready to enter the YAMBO 5.1
release. We plan to have it integrated in the v5.2 release (end of 2022 / beginning
2023).

In the following we will first briefly present the main actions and achievements of
the YAMBO code, accomplished during the M24-M36 period (Dec 2020 – Nov 2021)
and report in details the release notes of YAMBO 5.1 (see Sec. 2.2.1). Then we will
shortly summarise the work done in the last three years (MAX phase-2). YAMBO was
born and developed for a long time as a “tool for research”. While the MAX phase-1
project has significantly improved performances and scalability of the code, mostly fo-
cusing on many-core homogeneous machines, MAX phase-2 has forced YAMBO to shift
its developing model (for what concerns both internal procedures and software engineer-
ing aspects), turning more and more YAMBO into a “massively parallel community code
for materials science applications”. All of this while facing important technical develop-
ments such as, e.g., the introduction of a comprehensive support for GPUs.

To explain these changes, we fist summarise the work done for the modularisation and
refactoring of the code (see Sec. 2.2.2). Then we also present some procedures adopted
and needed to make this transition possible (see Sec. 2.2.3). Finally we will discuss
the developments present in the devel-gpu branch, also including ongoing and future
developments, and sharing our perspective on the co-design activities carried out in MAX
phase 2 (see Sec. 2.2.4).

2.2.1 YAMBO v5.1: Release Summary

The main developments (new features, improvements, optimisations) to be released with
YAMBO v5.1 are shortly summarised in the following, for different code run-levels.

Coulomb cutoff, screening and dipoles

• Added new Coulomb cutoff technique for for lower dimensional materials.

www.max-centre.eu 10

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

• Improved handling of anisotropy. For the q → 0 limit, now an average over three
Cartesian direction can be selected in input.

• YAMBO can now compute screening without SOC and later use it in a calculation
with SOC.

• Added option to project spin dipoles in valence and conduction band channel only,
to study independently the spin dynamics of electrons and holes.

• New scheme for dipoles via k-space derivatives, alternative to the already imple-
mented covariant dipoles.

TDDFT

• Added possibility to lower cutoff on fxc also in eh space. Useful for comparison
with G-space simulations.

• Defined F_xc_mat for magnons.

• Added support to hybrid functionals.

• Implemented computation of fxc via finite differences functional derivatives of vxc.
This approach makes possible to construct fxc within GGA.

GW

• W-average: full implementation of the W -average method for 2D system added
in the claculation of the GW correlation self-energy. This method, based on a
physically-driven interpolation of W joint with a MonteCarlo sampling, allows for
a significant convergence acceleration wrt k- and q-points.

• GW-MPA (multi-pole approximation) treatment of the frequency convolution needed
to evaluate the self-energy at the GW level.

BSE

• Reorganisation of the BSE subroutines: K_Transitions_setup split into two
subroutines, K_dipoles and K_IP_sort created, created K_restart file to
handle restart, K_multiply_by_V and K_driver split into to subroutines.

• Inversion of qindx_B indexes (performance), distribution in memory and parallel
I/O (see also section on IO).

• Added support for double grid with Haydock solver.

• W-average: a tentative implementation of the W -average method (at the mo-
ment for 2D systems) has been added to the BSE kernel construction.

Self-consistent and real-time modules: yambo_sc, yambo_rt & yambo_nl.

• Two independent chemical potentials can be added to model the non-equilibrium
excitonic insulator via yambo_sc.

• Added possibility to perform simulations with two external fields in yambo_nl
to model transient absorption experiments.

www.max-centre.eu 11

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

Figure 2: Code layers in YAMBO. The code can be driven directly or by using the yambopy
python layer. The high-level code is constituted by main drives that use the Ydriver library.
These drivers call the second–level drivers that are quantum engines that perform property cal-
culations. These interact via the modular structure described later with the domain specific and
low–level libraries.

• Ehrenfest dynamics. First experimental implementation available via qe_pseudo
library.

• Coded calculation of ARPES spectral function starting from GKBA reconstruction
of G<(t, t′) from density matrix via ypp_rt.

• Added calculation of field envelop and extraction of Rabi coupling in yambo_rt.

• Transient Absorption via ypp_rt restored and greatly improved.

• Improved handling of phenomenological dephasing in degenerate subspaces in
yambo_rt.

Electron-phonon in yambo_ph

• Double grid for exciton-phonon self-energy.

• Electron-phonon self-energy now works with irreducible and expanded electron
phonon matrix elements gkk′ .

• Possibility to plot diagonal elements of the gkk′ .

• Coded ph-el self-energy and added calculation of equilibrium phonon linewidths
using double grids, including support for reading bare el-ph matrix elements.

• Added calculation of phonon spectral functions via frequency-dependent ph-el
self-energy.

www.max-centre.eu 12

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

2.2.2 Code refactoring and modularisation in MAX phase2

Overall, during the phase 2 of MAX , the modularization activity has moved along the
following lines: code refactoring, extraction of code procedures as libraries, replacement
of internal procedure with external, optimised libraries. As already stressed, modalular-
ization plays also a crucial role in the optimisation of the code for parallel environment,
and in the support of GPU accelerators in particular. Indeed as many layers of GPU-
aware programming models (CUDA, OpenACC, OpenMP) are added to the source code,
a clean, ordered, and minimal structure avoids bugs, allows for readability of the sources,
and, in turn, enables to the scientific community to stay engaged with the development.

From a software point of view, the current structure of YAMBO, emerging after the
development activities of MAX phase 2, is described in Fig. 2. Notably, there is an
outer layer meant to interface with other codes (e.g. QUANTUM ESPRESSO) or for
post-processing and automation (YamboPy). Next one finds the highest level drivers and
quantum engines focusing on the scientific property calculators (e.g. dielectric function,
self-energies, BSE). These layers are followed by internal tools and domain specific li-
braries on the one side, and by mathematical and performance libraries on the other.
Hardware-specific implementations, if any, are kept at the lowest levels, and possibly
hidden in libraries (see e.g. multiple GPU-aware programming models wrapped by de-
viceXlib). Remarkably, this is an actual implementation of the separation of concerns
concept, where one wants to expose scientific developers with as few HW-specific as-
pects as possible.

The main software-architecture actions (modularization, internal and external libraries,
interfaces to DFT codes, YAMBO python-layer) undertaken since M24 (Oct 2020) are
summarised in the following.

Modularization.

• Modularization of the I/O subroutines. The io_control and io_connect
subroutines have been extracted from the global module and the same strategy has
been applied to the mod_IO_interfaces module.

• YAMBO adopts several internal tables to store the indices and maps for later reuse.
However, the price to pay is that the size of the tables can become very large in
some cases, such as in the presence of many k-points. In this release, we worked
out the case of the qindx_B variable, that can be now distributed in memory
taking advantage of HDF5 parallel I/O. While computing the table, the HDF5 file
is used as a buffer to check the values to be computed.

• Modularisation of the Bethe–Salpeter subroutines. Several long routines have
been split in thematic subroutines, re-written, and cleaned. A list includes:
K_Transitions_setup, K_multiply_by_V, and K_driver_split.

• Work variables. In order to modularise the large number of work variables used
in specific sections of the code we have introduced specific headers that are in
common to different sections of the code:
DEFINE_BSK_COMMON_INDEXES
FILL_BSK_COMMON_INDEXES
FILL_BSK_KERNEL_INDEXES
FILL_BSK_CORR_INDEXES

www.max-centre.eu 13

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

• I/O compression. The size of the excitonic Hamiltonian can become exceedingly
large when dealing with nanostructures and/or surfaces. In the latest YAMBO re-
lease we have implemented the HDF5 compression of the excitonic matrix database.

• Parallel I/O. A parallel I/O support has been coded for the Hartee plus Exchange–
Correlation integrals databases used in real–time simulations.

• New I/O interfaces. The use of new I/O interfaces has been extended in different
sections of the code (def_variable and io_variable).

Internal libraries. At M24, stable, well-tested and portable sections of the code have
been extracted as standalone libraries. In order to simplify the user access to these li-
braries we have moved all of them to a static part of the dedicated YAMBO git repository.
At the same time we have activated git large-file-support (LFS) on the repository to get a
fixed link for the files. This has lifted the need for users to clone the libraries source.

External libraries. YAMBO depends on several external libraries. Each of these li-
braries is paralleled by a set of dedicated internal structures (modules, interfaces) of the
code. Concerning the most recent developments:

• The devicexlib support has been upgraded to deal with an external library
contained either in a git repository or in a archive file.

• Finally YAMBO is now able to read and re-construct all the information about
pseudo-potentials via the QE_pseudo library.

• The libxc library support has been updated from version 2.2.3 to version 5.1.5.
All new libxc interfaces have been adopted and now YAMBO is able to link recent
external libxc libraries.

• For testing purposes an interface to the parallel netcdf library has been added
that can be detected by the internal configure script.

• Internally downloaded Slepc and Petsc libraries updated to version 3.14.2 and
3.14.6, with adoption of python3 for automatic configuration.

• Automatic configuration of MKL Intel libraries coded.

Interfaces with ground–state codes: p2y. The p2y interface has been further devel-
oped to keep in sync with the latest releases of QUANTUM ESPRESSO (QE). In par-
ticular, YAMBO is properly interfaced with qe-7.0, while keeping back compatibility
with previous versions. Additional data such as atomic projections (via the QE xml file
atomic_proj.xml) have also been included in the interface support and maintained.

Yambopy. Yambopy is a python layer providing additional functionalities for both
QUANTUM ESPRESSO and YAMBO. In particular, it provides:

• Easy pre- and post-processing of the simulation data, including hard-to-get, database-
encoded xml and netCDF data.

www.max-centre.eu 14

https://github.com/yambo-code/yambo-libraries
https://git-lfs.github.com/
www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

Merge request
to the main

develop
Branch

Developer
Branch

Night
Robots tests

are clear

ANY
developer

branch
Merge

http://www.yambo-code.org/robots/

Night Robots tests
are not clear

Figure 3: YAMBO merging procedure: the proposed developer branch has to give no errors in
night runs of the of the test-suite in several workstations before being eligible to be merged.
In case of failures fixes and amendments are required before repeating the testing procedure.

• Many visualization and plotting options.

• Input file parsing and generation.

• Abilty to run QE and YAMBO executables both on local machines and HPC facili-
ties.

• Command-line options for simple tasks.

• Simple automatization workflows (e.g., convergence tests).

• Hackability: user-specific functionalities can easily be added into the code.

In the MAX context, Yambopy is located in between the YAMBO main executables
and AiiDA. The yambopy project is composed of a gpl repository freely download-
able from the main YAMBO GIT repository, several tutorial sections on the YAMBO wiki
webpage and a private developmental version. The long-term goal is to give the users
full control over the data produced by the simulations, as well as more flexibility in their
workflows. The newly released version 0.2.0 of the code is updated and maintained for
the latest versions of QE and YAMBO and is capable to read and manage almost all rel-
evant netCDF databases produced by YAMBO, as well as the main xml outputs from
QE.

2.2.3 Software engineering procedures

Due to the large increase of YAMBO coding branches (currently 114 active branches on
the GIT official repository), we have introduced a coordinated validation and merging
procedure between the development and the stable/community branches. A key role in
the merging procedure is played by the YAMBO test-suite that collects about 4000
tests covering most of the code features. The tests contained in the test-suite are run
every night on several workstations by an automatised procedure and the results obtained
from the branch under testing are automatically uploaded on a public web-page.

www.max-centre.eu 15

https://github.com/yambo-code/yambopy
http://www.yambo-code.org/wiki/index.php?title=First_steps_in_Yambopy
http://www.yambo-code.org/wiki/index.php?title=First_steps_in_Yambopy
https://github.com/yambo-code/
http://www.yambo-code.org/robots/index.php
www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

The test-suite is also hosted on a dedicated git repository and is equipped with
several branches. The merging procedure is therefore based on the following rules:

• The develop branch is protected against direct writing, meaning that the only
option to modify it is via merge requests. By default the develop branch is test–
suite green (error free), as is the target of a merge request from a branch that has
successfully passed all the tests of the test-suite.

• Each development branch (here named devel-feature) that aims at being
merged with the develop branch has to create a dedicated test-suite branch.

• The workstations (robots) run night instances of the test-suite on the combina-
tion devel-feature branch of YAMBO on the tests of the devel-feature
branch of the test-suite. When the branch is green, i.e. gives no errors on
all reference workstations, then the devel-feature branch can be considered
a merge candidate.

• The developer opens a pull request and the source is reviewed by other expert
developers. When the review becomes positive (perhaps after a few recommenda-
tions are met) the devel-feature code and test-suite are merged with the main
references.

The above procedure is schematically represented in Fig. 3.

2.2.4 Exascale Readiness

As already mentioned in the introduction part of Sec. 2.2, the phase-2 of MAX sees
the YAMBO developers mainly focused on restructuring the code with new development
strategies, mostly and notably focused on GPU-programming models. In fact, one of the
most important aspects in terms of the exascale readiness and portability is the one related
to the support for GPU acceleration (not limited to NVIDIA cards, but also addressing
AMD and INTEL GPUs).

For this purpose, we first worked on a proof-of-concept (that we named gpu-multi)
that helped us understand how to have multiple GPU-oriented programming models to
living together in the same code without making is too complicated, disrupted, or exten-
sively replicated. Briefly, the reason for this work is the need to face the lack of a standard
and the consequent birth of more programming models for GPU offloading. In the deliv-
erable D4.6 we have thoroughly investigated both the motivation and the implementation
of this proof of concept.

The experience gained in the development of gpu-multi was then brought to the
YAMBO code within the devel-gpu branch. The first programming model ported is the
directive-based OpenACC, which goes alongside the already present CUDA-Fortran. To
avoid code duplication we made an intense use of preprocessor macros that activate the
language chosen at compile time. A detailed explanation of the adopted implementation
is present in the deliverable D2.3.

With the purpose of continuing the porting of the second GPU-aware backend (Ope-
nACC) and with the idea of favouring the support of even alternative programming mod-
els (such as OpenMP GPU), we decided to collect all the most common routines involv-
ing GPU offloading and handling in a library named deviceXlib. This idea, shared

www.max-centre.eu 16

https://github.com/yambo-code/yambo-tests
www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

with the QUANTUM ESPRESSO development team, was a natural step forward consid-
ering the software-architecture work done during MAX phase-2, largely focused on code
modularization and wrapping. The library is developed in a collaboration between the
QUANTUM ESPRESSO and YAMBO developers. YAMBO already makes use of some
routines of the library in the release that is going to be released and a complete sup-
port to the library is expected from the release 5.2. The details of the implementation
of deviceXlib (notably already targetting CUDA-Fortran, OpenACC, OpenMP pro-
gramming models, for NVIDIA, AMD, and INTEL GPUs) are discussed thoroughly in
the deliverable D2.3.

www.max-centre.eu 17

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

2.3 Siesta

In the past year, the Siesta program has seen substantial enhancements. Work on mod-
ularisation, and on interface refactoring to enable further modularisation, has continued
since M24, and a number of significant new functionalities have been implemented. We
can summarise the enhancements in the following list:

• Implementation of a basis-contraction scheme. (See more details in WP3 report.)

• A first implementation of support for exact exchange. (See more details in WP3
report.)

• Improvements to the automatic basis-set generation capabilities.

This feature, together with the use of PSML pseudopotentials, facilitates the use of
Siesta in high-throughput scenarios.

• Further refactoring of the OMM (Orbital Minimisation Method) linear-scaling ca-
pability, using the sparse matrix-matrix multiplication library DBCSR and the gen-
eral matrix handling layer library MatrixSwitch. This is one of the actions fea-
tured in WP3, and can have significant impact on the demonstrators of WP6 that
deal with systems with an energy gap in the electronic structure.

• Addition of the DFT-D3 scheme for approximate dispersion corrections.

• Further enhancements to the resilience and robustness of the code.

2.3.1 Global achievements in MAX-phase2

Modularisation. As discussed in the software-development plan, Siesta has benefit
from a significant modularisation effort (see Fig. 4).

New key functionalities.

• The ELSI library brings in a new collection of solvers and significant performance
enhancements.

Siesta was already able to use the ELPA, OMM, and PEXSI solvers with its own
ad-hoc interfaces. Now these are available through ELSI with a common interface,
and the code is also able to exploit theO(N) density-matrix purification algorithms
supported by the NTPoly solver, the new EIGENEXA solver, and a few more. With
the common interface in place, any additions and enhancements to the supported
solvers can be used with almost no code changes. This has been particularly im-
portant for the performance enhancement of the code, including GPU acceleration,
as detailed in the reports for WP2 and WP4.

• Support for modern multi-projector norm-conserving pseudopotentials through the
PSML format and library. This allows users of the code to employ curated pseu-
dopotentials from databases such as Pseudo-Dojo (https://www.pseudo-dojo.org),
and is particularly important in the context of calculations with spin-orbit coupling.

• Incorporation of the PSolver library. This provides the important capability of
performing simulations without imposing periodic boundary conditions.

www.max-centre.eu 18

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

Figure 4: Sketch of the modularisation of the Siesta program. Each bubble represents a library.
Dependencies are indicated by arrows, and logos at the end of a path show the MAX code in
which the libraries originate. Bubbles with double contours mark those libraries originating in
Siesta, and made available also through the Electronic Structure Library

www.max-centre.eu 19

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

Building system. The now very large number of potential dependencies of the code
calls for enhancing the flexibility and robustness of the building and deployment system.
This is a very demanding endeavour, but we are making progress by decoupling the tasks
of configuration management, the settings of options for compilation, and the compilation
and deployment, and handing them over to different tools. In particular, we are using
git submodules for the first task, and use modular scripts for the second one. We
have also a Cmake framework which is undergoing field tests to improve its generality
and portability to a variety of architectures.

Contribution and re-use of libraries. Apart from using external libraries for function-
ality and performance, the Siesta project has contributed a number of libraries. They are
now at the production level, and are already available to the wider community as part of
the ESL (Electronic Structure Library, https://esl.cecam.org) initiative. They
are described further in the Libraries section below.

www.max-centre.eu 20

https://esl.cecam.org
www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

Figure 5: The compilation dependencies of the libraries in BigDFT suite. Upstream packages
are now organized in plugins, and their compilation is optional, for domain-specific and system
libraries, respectively. The packages of the consortium are depicted in yellow.

2.4 BigDFT

The build system of the code has been updated and further restructured in the recent
version. We have separated the compilation of the code in core and a client group. We
present in Fig. 5 an example of such compilation. In the following paragraphs we will
illustrate the status of the development of the libraries that are internal to the BigDFT
developers consortium.

The version 1.9.2 of the BIGDFT code has been released in December, 2021. Version
1.9.3 is under preparation, and in beta stage. In regular meetings of the code developers,
the next actions were defined to restructure the inner part of the SCF loop in such a way
that the graph of the dependencies among the various code sections will be manipulated
by the end-user.

FUTILE and PSolver

See Secs. 3.4 and 3.5 in Libraries.

www.max-centre.eu 21

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

atlab

The library has been also released with a cmake build system, which at present comple-
ments the already available autotools module. Both approaches are therefore available.
Like the FUTILE library, we are presently working at a python module that should ab-
stract some of the operations on input positions and provide that to higher-level libraries
like PyBigDFT.

libconv

The libconv library is now stabilised and ready for integration in the code. The code
generation has also been tested on architectures like the Fugaku supercomputer.

PyBigDFT

As already presented in the M12 deliverable, this package is a collection of Python
Modules that are conceived for pre- and post- processing of BigDFT input and output
files. Such modules are supposed to enhance the BigDFT experience by an high-level
approach. Also, calculators and workflows are supposed to be created and inspected with
modules of the PyBigDFT package. This package is conceived as a set of Python mod-
ules to manipulate complex simulation setups in a HPC framework. Recent advances in
PyBigDFT have enabled the implementation and usage of new functionalities of BigDFT.

• The AiiDA BigDFT plugin has been inserted in PyBigDFT. It enables the remote,
asynchronous execution of a PyBigDFT workflow from a Jupyter notebook. For
each new production result of the BigDFT consortium, the calculations are trig-
gered and pre-postprocessed from PyBigDFT.

• The PyBigDFT API has been carefully checked with respect to the compatibility
with Python3 and Python2 (the Python2 support will be soon declared obsoles-
cent). Flake8 execution scripts are inserted in the continuous integration of the
library.

• Validation and verification techniques as per WP5 are now triggered entirely from
PyBigDFT.

• The PyBigDFT tools analysis has been coupled with established packages for the
simulation of biological systems that enable the analysis of production results, like
the complexity reduction framework used in the WP6 BigDFT demonstrator.

In Figs. 6, 7 and 8 we present some snippets showing how to employ the APIs of Py-
BigDFT in conjunction with AiiDA calculators.

We have implemented the “traditional” flavour of AiiDA plugin. Insallation proceeds
via: pip install aiida-bigdft

bundler

The Bundler package has now been merged with the jhbuild upstream version and unified
to the ESL package. Such package is defined from a fork of the Jhbuild package,1 that

1https://developer.gnome.org/jhbuild/

www.max-centre.eu 22

https://developer.gnome.org/jhbuild/
www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

from BigDFT import Calculators as C, Inputfiles as I
single_point=C.SystemCalculator()
inp = I.Inputfile()
inp.set_xc('LDA')
inp.write_orbitals_on_disk()
log=single_point.run(input=inp,posinp='mol.xyz')
print (log.energy)

Figure 6: SystemCalculator: the Aiida CalcJob equivalent

from BigDFT import Datasets as D
hgrid_cv=D.Dataset('h_set')
for h in [0.5,0.45,0.4,0.35,0.3]:

inp.set_hgrid(h)
hgrid_cv.append_run(id={'h':h},input=inp,runner=single_point)

results=hgrid_cv.run()
energs=hgrid_cv.fetch_results(attribute='energy')

Figure 7: Dataset: a small equivalent of a Aiida WorkChain

from BigDFT import AiidaCalculator as A
study=A.AiidaCalculator(code="bigdft@localhost",

num_machines=1,mpiprocs_per_machine=1,
omp=1,walltime=3600)

%load_ext jupyternotify
%notify
hgrid_cv.wait()
>>> '0 processes still running'

Figure 8: AiidaCalculator * used to remotely submit the job

www.max-centre.eu 23

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

has been conceived in the context of GNOME developers consortium. We are considering
the possiblity of submitting a Merge Request to the jhbuild developers to include our
needs in the GNOME development process. This package can now used as basis to
develop a common infrastructure to compile and link together libraries for electronic
structure codes. We are foreseeing some additional modifications to enable an easier
utilization by the end user.

sphinx-fortran

The project has been made compatible with python3 and it is now used in the Continuous
Integration to build the documentation of the corresponding packages documented in the
sources.

2.5 FLEUR

Work in FLEUR focused on several tasks. On the one hand, our efforts to modularize the
code further with a specific focus on the functionality required for hybrid functionals has
been continued leading to the separation of code into corresponding modules. While the
increased modularization and the stronger integration of external libraries into the code
has led to significant performance, functionality and design improvements, it also poses a
significant challenge when considering the build process. All code relevant for this work
is included in the final release MAX -R6.0 of the FLEUR code available at the FLEUR
webpage (https://www.flapw.de).

2.5.1 Hybrid functionals in LAPW (LapwLIB)

Hybrid functionals are an extension to the usual exchange-correlation treatment in DFT
that are very relevant for many complex oxide materials. At the same time, the evaluation
of the non-local potential used in these approximations are computationally very expen-
sive and thus a very obvious target of the refactoring and performance improvements
we aim at within MaX. In the full-potential linearized augmented plane wave method
(LAPW) employed in FLEUR several specific aspects of the hybrid functional are to be
considered. Most relevant is the fact that the hybrid functionals require the evaluation of
the Hartree operator for products of wavefunctions. Since these wavefunctions are ex-
panded into LAPW basis functions and products of LAPW basis functions are not LAPW
basis functions itself, an additional set of numerical basis functions is required for this
evaluation. The refactoring of this code had two different goals. On the one hand, we
aimed at the identification of basic operations suitable for encapsulation to generate a set
of modules with a clearly defined functionality (LapwLIB). On the other hand, we also
had the requirements of refactoring for performance and portability in mind. The result-
ing code now enables the evaluation of hybrid functionals with an unscreened Coulomb
interaction within the MaX version of FLEUR. The performance of this newly structured
code is reported in the corresponding section of WP2.

2.5.2 Build process in view of external dependencies

The build of FLEUR relies on an increasing number of libraries, both external to the
project and generated by refactoring the original code: therefore it becomes increasingly

www.max-centre.eu 24

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

complex to establish a reliable build process. In particular, the fact that Fortran modules
have to be compiled with the same compiler often restricts the simple use of pre-installed
libraries and requires a consistent build of FLEUR together with such external libraries.
To enable this we utilize the cmake (www.cmake.org) build system in which we define a
series of scripts to determine the required dependencies, download them where appropri-
ate and build the software stack needed by FLEUR. In the future, we foresee the need to
improve this process further, e.g. by providing a better integration into package manage-
ment solutions like Spack (spack.io) for which simple FLEUR recipes already exist. The
need to use a rather involved configuration and build tool is of particular relevance in the
case of GPU-aware deployment of FLEUR, in which we often experienced challenges in
the software stack for Fortran development.

2.6 CP2K

CP2K code has modular approach to the software development and relies on many ex-
ternal libraries. Build system of CP2K needs around 30 external dependencies for the
full-featured version of CP2K. To address T1.1.2 (Code refactoring) of this work pack-
age, the following steps were taken:

Introduce CMake In order to modernise the build system of CP2K a pull-request
for CMake has been opened (https://github.com/cp2k/cp2k/pull/1259).
The work is in progress and will be continued.

Improve Spack support The recipe for CP2K in Spack has been updated to the latest
version (8.2) of the code and enhanced to support the recent Cray programming environ-
ments.

Grid submodule The operations on the real-space regular grid (density expansion
in Gaussian basis functions and density integration) were encapsulated in the indepen-
dent submodule of CP2K (https://github.com/cp2k/cp2k/tree/master/
src/grid) and the Fortran API was created. The grid submodule is independent of the
host CP2K code.

www.max-centre.eu 25

https://github.com/cp2k/cp2k/pull/1259
https://github.com/cp2k/cp2k/tree/master/src/grid
https://github.com/cp2k/cp2k/tree/master/src/grid
www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

3 Libraries

Together with the flagship codes, the MAX libraries bundle represent a major outcome
of WP1 development effort. Most of the libraries were identified and planned in the
Software Development Plan [1], with few new libraries that were added at M18 [2]. At
variance with the codes and the development platforms –such as SIRIUS– that pro-
vide functional ecosystems into which one can integrate new applications, the libraries
have been designed, developed, and tested in view of the standalone use by generic third
party codes. The consequent externalisation of such functionalities in the original codes
has been also advantageous, allowing a full separation of concerns and, in particular for
performance critical kernels, enhancing the adoption and development of architecture-
specific implementations.

The implemented functionalities include: (i) low level system utilities; (ii) libraries
for the formatted and hierarchical I/O; (iii) computational kernels. The use of completely
disentangled libraries for accessing the latter ones has also been effective in enabling col-
laborations with other groups and vendors for the realisation of specific implementations
of these performance-crucial functionalities.

The development of the libraries between M18 and M36 has followed the schedule
indicated in the updated plan [2]. We report here the schedule in Table 1 for completeness.
Further work is still ongoing for the maintentance and improvement of the interfaces.

3.1 SpFFT

A (distributed) FFT is one of the computationally intensive kernels of many DFT codes.
As such, a common FFT library that is specifically designed for the spherical plane-wave
cutoffs and pencil G-vector distribution is in a high demand. To address this problem
a SpFFT library has been designed and implemented. SpFFT is a 3D FFT library for
sparse frequency domain data written in C++ with support for MPI, OpenMP, CUDA
and ROCm. SpFFT has the following highlights:

• support for spherical cutoffs

• support for pencil decomposition of G-vector columns

• support for CUDA and ROCm programming models (NVIDIA and AMD)

• 1D-2D domain decomposition to reduce the MPI communication cost and max-
imise the load of GPU cards

• support of FP64 and FP32 precision

• CMake build system

• support in Spack package manager

• API documentation (available here)

• Fortran90 interface

• examples for C/C++/Fortran90

The development of SpFFT library is finished and the maintenance of the library will
be continued at CSCS. The benchmark of the SpFFT library is presented on the Fig. 9-10

www.max-centre.eu 26

https://github.com/eth-cscs/SpFFT
https://spfft.readthedocs.io/en/latest/?badge=latest
www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

MAX libraries expected roadmap (M18-M36)
Library Group Month M18 Month M24 Month M36

FUTILE BIGDFT Production Production Production
PSolver BIGDFT Production Production Production
atlab BIGDFT PoC PoC Beta
libconv BIGDFT Production Production Production
bundler BIGDFT Beta Production Production
PyBigDFT BIGDFT Beta Production Production
sphinx-fortran BIGDFT Beta Beta Production
juDFT FLEUR Production Production Production
LAPWlib FLEUR Beta Beta Production
IO-t FLEUR Beta Beta Production
qe_h5 Q. ESPRESSO Production Production Production
xsdtool Q. ESPRESSO Production Production Production
UtilXlib Q. ESPRESSO Production Production Production
FFTXlib Q. ESPRESSO Beta Beta Production
LaXlib Q. ESPRESSO Production Production Production
KS_solvers Q. ESPRESSO Beta Production Production
LRlib Q. ESPRESSO PoC PoC Beta

UPF_lib
Q. ESPRESSO

YAMBO
PoC Beta Production

XClib
Q. ESPRESSO

YAMBO
PoC Beta Production

DevXlib
Q. ESPRESSO

YAMBO
Beta Beta Production

Driver_Ylib YAMBO PoC Beta Production
CoulCut_Ylib YAMBO PoC Beta Production
LA_Ylib YAMBO PoC Beta Production
IO_Ylib YAMBO PoC Beta Production
GridXC SIESTA Production Production Production
libPSML SIESTA Production Production Production
ELSI-interface SIESTA PoC PoC PoC
LibNeigh SIESTA PoC Beta Production
Lua scripting SIESTA Production Production Production
libFDF SIESTA Production Production Production
xmlf90 SIESTA Production Production Production
libDBCSR CP2K Production Production Production

Table 1: Expected Roadmap for the libraries development in the second 18 months of the project.
PoC : Proof of concept version, BETA: release candidate, Production: interoperable library
ready for release.

www.max-centre.eu 27

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

Figure 9: Comparison of the FFTXlib and SpFFT parallel performance using FFTXlib’s bench-
mark mini-app. The FFT grid size is 243 x 384 x 576. This test is also a demonstrator of how to
use SpFFT in the scientific application.

Figure 10: Comparison of the FFTXlib and SpFFT OpenMP threading support. The tests was
executed on 1-18 cores of Intel Broadwell processor. The FFT grid size is 243 x 384 x 576.

www.max-centre.eu 28

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

3.2 SPLA

The analysis of computationally-intensive kernels of plane-wave DFT codes revealed a
tall-and-skinny matrix multiplication as one of the bottlenecks. A tall-and-skinny ma-
trix can, for example, be a set of wave-functions distributed over MPI ranks or a set of
plane-wave coefficients of the electron-hole pairs in the RPA type of calculations. In
both examples a code needs to perform a summation over a long index and create a fi-
nal (small) matrix usually in ScaLAPACK 2D block-cyclic distribution. To address this
problem a SPecialised Linear Algebra (SPLA) was created. Currently, SPLA provides
functions for distributed matrix multiplications with specific matrix distributions, which
cannot be used directly with a ScaLAPACK interface. All computations can optionally
utilize GPUs through CUDA or ROCm, where matrices can be located either in host or
device memory. SPLA has the following highlights:

• support for CUDA and ROCm programming models (NVIDIA and AMD)

• support of FP64 and FP32 precision

• support for host and device pointers

• CMake build system

• support in Spack package manager

• API documentation (available here)

• Fortran90 interface

• examples for C/C++/Fortran90

The development of SPLA library is finished and the maintenance of the library will be
continued at CSCS. The benchmark of the SPLA library is presented on the Fig. 11.

3.3 SIRIUS

SIRIUS is a domain specific library for electronic structure calculations. It implements
pseudopotential plane wave (PP-PW) and full potential linearized augmented plane wave
(FP-LAPW) methods and is designed for GPU acceleration of popular community codes
such as Exciting, Elk and Quantum ESPRESSO. The following milestones were accom-
plished during the course of the project and in addition, various bugfixes and performance
optimisations were discovered and implemented.

ROCm support The common simple mechanism to wrap CUDA and ROCm kernels
was proposed and implemented.

Support for multi-GPU nodes A few changes haad to be tested and implemented in
order to run on the multi-GPU nodes (for example, on Marconi100).

Switch to SpFFT and SPLA The custom SIRIUS implementations of distributed FFT3D
and linear algebra operations on wave-functions were wiped out and replaced by the
newly-developed SpFFT and SPLA libraries.

www.max-centre.eu 29

https://github.com/eth-cscs/spla
https://spla.readthedocs.io/en/latest/?badge=latest
www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

Figure 11: Benchmark of the different matrix-multiplication libraries in the tall-and-skinny mul-
tiplication problem with [m,n,k] triplet set to [10’000, 10’000, 1’000’000]. The benchmark was
executed on 36-484 nodes of Piz Daint GPU partition. Each node is equipped with 12-core Intel
Haswell @2.6 GHz and NVIDIA P100 GPU card. Average performance per node is reported.
Lines: blue - SPLA with matrices already allocate on the device; orange - SPLA with host point-
ers; green - COSMA library with host pointers; red - Cray’s proprietary LibSci_acc library with
host pointers.

www.max-centre.eu 30

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

Figure 12: SIRIUS is built on top of the current software stack. Spack package manager is used
to build and resolve the dependencies.

Add interface to NLCGLIB An interface to robust wave-function optimisation library
NLCGLIB was added to SIRIUS. This allows to achieve the convergence in systems
where regular density mixing scheme fails.

Interface SIRIUS with CP2K and BigDFT SIRIUS was interfaced with CP2K and
BigDFT to enable plane-wave ground-state functionality in these codes.

Callback mechanism Callback functions to compute radial integrals of local part of
pseudopotential, core charge density, beta projectors and augmentation charge from the
host code were introduced in order to improve the numerical reproducible.

Total energy contributions SCF correction to total energy and entropy contribution
from smearing were added to SIRIUS.

Improved Davidson solver The locking mechanism was added to Davidson solver in
order to exclude the converged wave-functions from the subspace diagonalization.

3.4 FUTILE library

This library is in production stage since several months already. It has already been
employed in several codes like YAMBO and FLAME. We are presently working on the
release of a python package which includes the modules which are associated to the
operations performed by futile.

www.max-centre.eu 31

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

3.5 PSolver

The PSolver library is also released in production stage and can be installed indepen-
dently.

3.6 LAXlib

This library provides general transparent interfaces for linear algebra operations on large
2D matrices distributed on an MPI group. The library provides a general API which ex-
poses the different available solvers on a unified high level interface such that our codes
can easily exploit the library best suited for the used architecture and problem size. For
simplicity, we adopted two different data-layouts in which the matrices can be provided.
One set of routines that require the full matrices to be provided and thus is suitable for
small problems or shared memory setups and routines that deal with distributed ma-
trices stored across nodes in which we adopted the SCALAPACK distribution scheme
with the corresponding BLACS descriptors. The production version supports the GPU-
aware cublas library. The support for other GPU aware libraries such as oneMKL,
ROCsolver, MAGMA, and ELPA are under development. In addition to the computa-
tional routines, LAXlib also contains callback routines in order to register code-specific
timing as well as routines and error-handlers to allow for a seamless integration into the
code-specific infrastructure. The library is constructed with-out explicit Fortran modules
but with general include (header) files such that it imposes no compiler specific depen-
dencies in its usage.

3.7 FFTXlib

This is a Fortran library that performs distributed 3D FFTs. Its distributed data struc-
ture is designed to fit the needs of plane-wave pseudopotential codes. In the reciprocal
space data are distributed among MPI ranks in sticks along the z direction. In real space
data are distributed as slabs and slab-slices. The 3D transform is computed as a succes-
sion of 1D FFTs on stick, or 2D FFTs on slabs. The 3D data distribution is transposed
from the z-stick distribution to the z-slice via a sequence on MPI all-to-all calls. The API
has been update to make possible to choose at run time between the "pencil" (1D-1D-1D)
and "slab" (1D-2D) decomposition of 3D FFT grids. The library runs in pure CPU mode
or in heterogeneous mode. Different strategies are used to optimize the performance (
see the WP2 D2.3 deliverable) in the two cases.

3.8 KS_Solvers

This library collects the implementation of various iterative diagonalization algorithms.
They are used inside DFT codes to diagonalize the Kohn-Sham Hamiltonian.

The iterative diagonalization algorithms are disentangled from any specific Hamil-
tonian builder. The Hamiltonian operator may be called by the library as an exter-
nal routine; in this case the external subroutine must use the same data structure as in
KS_Solvers. It is also possible, for some of the schemes, to use the Reverse Commu-
nication Interface (RCI); in this case the interface receives ψ and Hψ as arguments, the
task of computing and converting them to the format expected by the RCI must be done
by the driver.

www.max-centre.eu 32

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

In the latest version we have introduced the RMM-DIIS [5] scheme and improved the
ParO and PPCG schemes (see also WP3 D3.4 deliverable).

3.9 XClib

Starting from release 6.8 the exchange-correlation (XC) DFT management (LDA, GGA,
MGGA) has been entirely shifted into an external library, XClib. The library interfaces
through a set of XC-wrapper routines, provides by default a wide set of internally imple-
mented functionals. The interface also allows access to those implemented in the external
Libxc library, if linked. The management of the Libxc parameters has been simplified
by means of a few wrapper routines that allow the user to set the desired values without
the need to dig into technical details. A small program, xc-infos, has been included
in order to guide the user through the DFT choice and usage by providing information on
all the available DFT features, on their usability and on the references of both the inter-
nal and external (Libxc) ones. While doing this, the DFT list and its management have
been reorganized and put in a single module in order to make it easier to add, remove, or
modify functionals and to get easy access to all the available information. Obsolete func-
tionals have been removed and the nomenclature of Libxc-based ones has been modified
(now index based) in order to avoid overlaps between names of different DFTs (one of
the recurring issues reported from QE users). CUDA support that previously was based
on CUDA-Fortran has been completely refactored in openACC. The new version in
more portable (works with gfortran, experimental AMD compilers).

Also the APIs have been refactored for more portability and reusability. The in-
put/output arguments of the xc-wrappers can be provided both on host or device, depend-
ing on the value of an optional input variable, gpu_args. If this flag is set to true, the
input arguments (density and related differentials) are received as device variables, the
calculation is performed on GPU and the output is left on device. Otherwise the input is
copied on device and the output results moved to the host. A testing program xc_test
has been included, in order to keep control over the large amount of available DFTs, both
internal and external (Libxc), and to check the xc-output matching between different
parallelization schemes (MPI, openMP, openACC) and different versions of the library
itself. The program calculates the xc energy and potential (and optionally derivatives)
over a fixed density grid and stores the results on a XML file, which can be used as a
benchmark set of data in a second run. XML data sets for QE v6.8 have been included in
XClib so that they can be used by the program as comparison whenever a modification
in XClib is added by developers. Based on the XClib GPU porting, the potential calcu-
lation in QE has been accelerated too and combined with the CUDA enabled interfaces
for FFTs, with very good performance increase (up to 10x with respect to CPU-only for
medium size runs).

3.10 UPFlib

This developed library contains all functionalities needed in plane-wave pseudopotential
codes for reading pseudopotential data-sets in the UPF format 2 and generating poten-
tials and projectors. These functionalities are needed for the development on any post-

2http://pseudopotentials.quantum-espresso.org/home/
unified-pseudopotential-format

www.max-centre.eu 33

http://pseudopotentials.quantum-espresso.org/home/unified-pseudopotential-format
http://pseudopotentials.quantum-espresso.org/home/unified-pseudopotential-format
www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

processing application that uses the wavefunctions produced by QUANTUM ESPRESSO.
The library contains also a set of functionalities and utilities for the conversion of pseu-
dopotentials from other formats to UPF. The library is GPU ready. Within the MAX
consortium the library is used developed and maintained by the YAMBO and QUANTUM

ESPRESSO teams.

3.11 xsdtool, qe_h5, and UtilXlib

These three utilities were completed in production phase before M18.

• The xsdtool 3 is a python application that, receiving in input an XSD schema,
generates the source code necessary for writing, reading and storing the content of
the XML files organized according the said schema. The xsdtool replaces the
xmltool proposed in D1.1.

• The qe_h5 library is constituted by two self-contained modules that provide a set
of Fortran interfaces for writing and reading integer, real and complex datasets.

• UtiliXlib provides a low level utility layer that is used by all parts of QUAN-
TUM ESPRESSO to initialize some basic functionalities such as MPI groups, error
handling and timing and profiling utilities. The utility is mostly used in QUANTUM

ESPRESSO, but it is very general and can be used in any Fortran application.

3.12 omm-bundle

The OMM-bundle 4 comprises a functionality to solve the Kohn-Sham problem by the
orbital minimization method (libOMM library), as well as auxiliary libraries for the in-
volved matrix operations. Among the latter, MatrixSwitch is a multi-format matrix stor-
age and operation library.

Within MaX, the libOMM and MatrixSwitch libraries have been extended to link
them with Siesta for linear and cubic-scaling calculations. It is noteworthy that most of
the code for both operation modes is the same, and specific aspects are handled trans-
parently by MatrixSwitch by calling the appropriate backends: ScalaPack for the cubic-
scaling mode, and the DBCSR library (see CP2K section) for the linear-scaling mode.

3.13 xmlf90

The xmlf90 package is a set of libraries to handle XML in modern Fortran. It has two
major components:

• a XML parsing library. The parser is designed to be a useful tool in the extraction
and analysis of data in the context of scientific computing, and thus the priorities
are efficiency and the ability to deal with very large XML files while maintaining a
small memory footprint. The most complete programming interface is thus based
on the very successful SAX (Simple API for XML) model. For completeness, a
partial DOM interface and an experimental XPATH interface are also present;

3https://github.com/QEF/xsdtools
4https://gitlab.com/ElectronicStructureLibrary/omm-bundle

www.max-centre.eu 34

https://github.com/QEF/xsdtools
https://gitlab.com/ElectronicStructureLibrary/omm-bundle
www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

• a library (xmlf90-wxml) that facilitates the writing of well-formed XML, including
such features as automatic start-tag completion, attribute pretty-printing, and ele-
ment indentation. There are also helper routines to handle the output of numerical
arrays.

The library is at the production stage, fully documented, and with a set of examples.
It has been fitted with an autotools-based building system5.

3.14 LibFDF

FDF stands for Flexible Data Format and LibFDF is the official implementation of the
FDF Specifications for use in client codes. At present the FDF format is used extensively
by Siesta, and it has been an inspiration for several other code-specific input formats.
The key feature of FDF is that it provides a much needed flexibility in the handling of
the input to a program. It is based in a keyword/value paradigm (including units), and
is supplemented by a block interface for arbitrarily complex blobs of data. New input
options can be implemented very easily. When a keyword is not present in the FDF file
the corresponding program variable is assigned a pre-programmed default value. The
library is at the production stage and distributed on GitLab.6.

3.15 libPSML

The common historical pattern in the design of pseudopotential file formats has been that
a generator produced data for a single particular simulation code, most likely maintained
by the same group. This implied that a number of implicit assumptions, shared by gener-
ator and user, have gone into the formats and fossilized there. This led to practical prob-
lems, not only of programming, but of interoperability and reproducibility, which depend
on spelling out quite a number of details which are not well represented for all codes in
existing formats. PSML (for PSeudopotential Markup Language) [10, 11] is a file format
for norm-conserving pseudopotential data which is designed to encapsulate as much as
possible the abstract concepts in the domain ontology, and to provide appropriate meta-
data and provenance information. PSML files can be produced by the ONCVPSP [12]
and ATOM [13] pseudopotential generator programs, and are a download-format option
in the Pseudo-Dojo database of curated pseudopotentials [14, 15].

The software library libPSML [10, 11] can be used by electronic structure codes to
transparently extract the information in a PSML file and adapt it to their own data struc-
tures, or to create converters for other formats. It is currently used by Siesta and Abinit,
making possible a full pseudopotential interoperability and facilitating comparisons of
calculation results. Efforts are underway to expand the ecosystem of PSML tools to in-
teroperate with QUANTUM ESPRESSO and YAMBO. The library is at the production
stage and distributed on GitLab.7.

5https://gitlab.com/siesta-project/libraries/xmlf90
6https://gitlab.com/siesta-project/libraries/libfdf
7https://gitlab.com/siesta-project/libraries/libpsml

www.max-centre.eu 35

https://gitlab.com/siesta-project/libraries/xmlf90
https://gitlab.com/siesta-project/libraries/libfdf
https://gitlab.com/siesta-project/libraries/libpsml
www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

3.16 libGridXC

The libGridXC library 8 started life as SiestaXC, a collection of modules within Siesta
to compute the exchange-correlation energy and potential in DFT calculations for atomic
and periodic systems. The ”grid” part of the name refers to the discretization for charge
density and potential used in those calculations. The original code included a set of low-
level routines to compute εxc(r) and Vxc(r) at a point for LDA and GGA functionals
(i.e., a subset of the functionality now offered by libxc), and two high-level routines to
handle the computations (in parallel) in the whole domain (with radial or 3D-periodic
grids), including any needed computations of gradients, integrations, etc. In addition,
SiestaXC pioneered the implementation of efficient and practical algorithms for support
of van der Waals functionals [16]. The current libGridXC retains and streamlines most of
the SiestaXC functionality, and enhances it by offering an interface to libxc that supports
a much wider selection of XC functionals. The library can also deal with non-collinear
spin densities.

The library is in production stage. It has been recently extended to support libxc
V5, which, among other improvements, supports GPU operation. A refactoring of Lib-
GridXC’s internal structure, needed to actually exploit this functionality, is in advanced
stages of implementation. A second-generation API, to offer support for MGGA func-
tionals and for higher derivatives of the exchange-correlation energy density, is being
designed.

8https://gitlab.com/siesta-project/libraries/libgridxc

www.max-centre.eu 36

https://gitlab.com/siesta-project/libraries/libgridxc
www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

4 Conclusions and ongoing work

The MAX flagship codes and libraries are able to run on many of the currently used
HPC architectures. While support for NVIDIA GPUs, even at scale, is consolidated,
the main concern for the exascale readiness comes from the yet experimental level of
support that we have for AMD and Intel GPGPUs. Most of the ongoing work is thus
currently targeted at enhancing the support of AMD and Intel accelerators in our libraries
and flagship codes.

As we had prospected in the software development plan (SDP [1]), the major reor-
ganisation of the codes carried through in the years of MAX pahse 2 has been very
helpful in this respect. The main achievements of the reorganisation are the thorough
modularisation of the code; the removal of most of the global data structures; the adop-
tion of effective APIs for connecting the many functionalities; the refactoring of many
code parts in standalone libraries.

In this last year, thanks to these acquired features, we have been able to rapidly en-
hance the performance and the performance portability of our codes. We have introduced
new algorithms (see WP3 report D3.4); developed, tested and adopted specific libraries
that in order to run efficiently on different architectures (see WP2 report D2.3).

The complete encapsulation of the different code parts has enabled us to shift most of
the effort for exascale readiness from the whole code to specific computationally inten-
sive kernels. Some of these kernels were developed by MAX and included in our library
bundle, while others were taken from other platforms as for example ELSI. In all cases
the libraries circumscribe the porting task to well defined code parts. This makes it more
feasible to tackle the porting issues in collaboration with experts from HPC centres, or
software engineers from HW vendors. Collaborative development events have been or-
ganised by MAX WP8, as for example the Hackathon held online from January 24-th to
February 20-th 2022, targeted at porting and testing MAX code in AMD GPGPUs.

Even if the modularisation has removed most of the porting instructions out the high-
level code layers, and the encapsulation enhances the adoption of local data structures, in
some cases it is still more efficient to allocate and access to global arrays in the accelerator
memory. This choice affects the code structures, causing issues such the duplication of
variables and subroutines. The problem has been progressively solved by adopting for
the higher code layers a directive-based approach, either using openACC or opemMP5.
For this purpose the MAX bundle contains the DevXlib library. This library provides
transparent interfaces and precompiler macros for managing and operating on accelerator
data.

The work done in the last year and the ongoing activities demonstrate clearly that the
restructuring work has successfully prepared our codes for being used on current peta-
and pre-exascale HPC machines by EuroHPC.

Acronyms

API Application Programming Interface. 4, 37

CPU Central Processing Unit. 9

www.max-centre.eu 37

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

DFPT Density Functional Perturbation Theory. 7, 9

ELSI ELectonic Structure Infrastructure [17]. 37

GPGPU General Purpose GPU. 4, 6, 9, 10, 37

SDP Software Development Plan. 5, 37

TDDFPT Time Dependent Density Functional Perturbation Theory [18]. 9

www.max-centre.eu 38

www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

References

[1] Baroni, S. et al. First report on software architecture and implementation plan.
Deliverable D1.1 of the H2020 CoE MaX (final version as of 30/03/2019). EC grant
agreement no: 824143, SISSA, Trieste, Italy. (2019).

[2] Baroni, S. et al. Second report on softwarearchitecture and implementa-
tion planning. Deliver-able D1.3 of the H2020 CoE MaX (final version asof
31/05/2020). EC grant agreement no: 824143,SISSA, Trieste, Italy (2020).
URL http://www.max-centre.eu/sites/default/files/D1.3%
20Second%20report%20on%20software%20architecture%20and%
20implementation%20planning.pdf.

[3] Baroni, S. et al. Second release of MAX software: Report on first
common APIs, data structures and domain-specific libraries. Deliver-
able D1.4 of the H2020 CoE MaX (final version as of 30/11/2020).
EC grant agreement no: 824143, SISSA, Trieste, Italy. (2020). URL
http://www.max-centre.eu/sites/default/files/D1.4_
Second%20release%20of%20MaX%20software_Report%20on%
20first%20common%20APIs%2C%20data%20structures%20and%
20domain-specific%20libraries.pdf.

[4] Baroni, S. et al. First release of MAX software: report on performed and
planned refactoring. Deliverable D1.2 of the H2020 CoE MaX (final version as
of 29/11/2019). EC grant agreement no: 824143, SISSA, Trieste, Italy. (2020).
URL http://www.max-centre.eu/sites/default/files/D1.
2%20First%20release%20of%20MAX%20software_report%20on%
20performed%20and%20planned.pdf.

[5] Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

[6] Elliott, J. D., Colonna, N., Marsili, M., Marzari, N. & Umari, P. Koopmans meets
bethe–salpeter: Excitonic optical spectra without gw. Journal of Chemical Theory
and Computation 15, 3710–3720 (2019).

[7] Pederzoli, M. & Pittner, J. A new approach to molecular dynamics with non-
adiabatic and spin-orbit effects with applications to qm/mm simulations of thio-
phene and selenophene. The Journal of Chemical Physics 146, 114101 (2017).

[8] Hagiwara, S., Hu, C., Nishihara, S. & Otani, M. Bias-dependent diffusion of a h2o
molecule on metal surfaces by the first-principles method under the grand-canonical
ensemble. Physical Review Materials 5 (2021).

[9] Ryoo, J. H., Park, C.-H. & Souza, I. Computation of intrinsic spin hall conductiv-
ities from first principles using maximally localized wannier functions. Phys. Rev.
B 99, 235113 (2019).

[10] García, A., Verstraete, M. J., Pouillon, Y. & Junquera, J. The psml format and li-
brary for norm-conserving pseudopotential data curation and interoperability. Com-
puter Physics Communications 227, 51 – 71 (2018).

www.max-centre.eu 39

http://www.max-centre.eu/sites/default/files/D1.3%20Second%20report%20on%20software%20architecture%20and%20implementation%20planning.pdf
http://www.max-centre.eu/sites/default/files/D1.3%20Second%20report%20on%20software%20architecture%20and%20implementation%20planning.pdf
http://www.max-centre.eu/sites/default/files/D1.3%20Second%20report%20on%20software%20architecture%20and%20implementation%20planning.pdf
http://www.max-centre.eu/sites/default/files/D1.4_Second%20release%20of%20MaX%20software_Report%20on%20first%20common%20APIs%2C%20data%20structures%20and%20domain-specific%20libraries.pdf
http://www.max-centre.eu/sites/default/files/D1.4_Second%20release%20of%20MaX%20software_Report%20on%20first%20common%20APIs%2C%20data%20structures%20and%20domain-specific%20libraries.pdf
http://www.max-centre.eu/sites/default/files/D1.4_Second%20release%20of%20MaX%20software_Report%20on%20first%20common%20APIs%2C%20data%20structures%20and%20domain-specific%20libraries.pdf
http://www.max-centre.eu/sites/default/files/D1.4_Second%20release%20of%20MaX%20software_Report%20on%20first%20common%20APIs%2C%20data%20structures%20and%20domain-specific%20libraries.pdf
http://www.max-centre.eu/sites/default/files/D1.2%20First%20release%20of%20MAX%20software_report%20on%20performed%20and%20planned.pdf
http://www.max-centre.eu/sites/default/files/D1.2%20First%20release%20of%20MAX%20software_report%20on%20performed%20and%20planned.pdf
http://www.max-centre.eu/sites/default/files/D1.2%20First%20release%20of%20MAX%20software_report%20on%20performed%20and%20planned.pdf
www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D1.5
Third release of MAX software: Final report on restructuring,
exascale readiness and inter-code libraries

[11] See: https://siesta-project.github.io/psml-docs.

[12] Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys.
Rev. B 88, 085117 (2013).

[13] ATOM code for the generation of norm-conserving pseudopotentials. The ver-
sion maintained by the SIESTA project can be accessed at http://icmab.es/
siesta/Pseudopotentials/index.html. An alternative version is avail-
able at http://bohr.inesc-mn.pt/~jlm/pseudo.html.

[14] van Setten, M. J. et al. The PSEUDODOJO: Training and grading a 85 element
optimized norm-conserving pseudopotential table. Computer Physics Communica-
tions 226, 39–54 (2018).

[15] See: http://www.pseudo-dojo.org.

[16] Román-Pérez, G. & Soler, J. M. Efficient implementation of a van der waals density
functional: Application to double-wall carbon nanotubes. Phys. Rev. Lett. 103,
096102 (2009).

[17] ELSI . URL http://elsi-interchange.org.

[18] Rocca, D., Gebauer, R., Saad, Y. & Baroni, S. Turbo charging time-dependent
density-functional theory with Lanczos chains. J. Chem. Phys. 128, 154105 (2008).

www.max-centre.eu 40

https://siesta-project.github.io/psml-docs
http://icmab.es/siesta/Pseudopotentials/index.html
http://icmab.es/siesta/Pseudopotentials/index.html
http://bohr.inesc-mn.pt/~jlm/pseudo.html
http://www.pseudo-dojo.org
http://elsi-interchange.org
www.max-centre.eu

	Introduction
	Work on the different codes
	Quantum ESPRESSO
	Release Summary
	Restructuring in MaX-phase2
	Exascale readiness

	yambo
	yambo v5.1: Release Summary
	Code refactoring and modularisation in MaX phase2
	Software engineering procedures
	Exascale Readiness

	Siesta
	Global achievements in MaX-phase2

	BigDFT
	FLEUR
	Hybrid functionals in LAPW (LapwLIB)
	Build process in view of external dependencies

	CP2K

	Libraries
	SpFFT
	SPLA
	SIRIUS
	FUTILE library
	PSolver
	LAXlib
	FFTXlib
	KS_Solvers
	XClib
	UPFlib
	 xsdtool, qe_h5, and UtilXlib
	omm-bundle
	xmlf90
	LibFDF
	libPSML
	libGridXC

	Conclusions and ongoing work
	Acronyms
	References

