Introduction to Marconi100

Fabio Affinito
Cineca
Marconi 100 is an IBM AC922 (Whiterspoon) cluster

55 racks

980 nodes

2 x Power9 CPU
16 cores each
4 HW threads each

4 x NVIDIA Volta V100 GPU
Nvlink 2.0, 16GB

256 GB/node
Figure 2-5 The Power AC922 server model GTH logical system diagram
Each node has two IBM Power9 sockets

2 (socket) x 16 (cores) x 4 HW threads

Total: 128 threads on the node
Each Marconi100 node has four V100 GPUs

Each Tesla V100 GPU has:

- 150+150 GB/s total BW (NVLink v2.0)
- 5,120 CUDA cores (64 on each of 80 SMs)
- 640 Tensor cores (8 on each of 80 SMs)
- 20MB Registers | 16MB Cache | 16GB HBM2 @ 900 GB/s
- 7.5 DP TFLOPS | 15 SP TFLOPS | 120 FP16 TOPS

nVIDIA GPUDirect technology is fully supported (shared memory, peer-to-peer, RDMA, async), enabling the use of CUDA-aware MPI
Marconi100 Software Stack

- **Compilers**
 - XL (IBM compilers: xlf90, xlC, etc.)
 - GNU (gcc, gfortran)
 - PGI
 - CUDA

- **Communication Libraries**
 - Spectrum_MPI
 - OpenMPI

- **Libraries**
 - ESSL, BLAS, LAPACK, FFTW
 - HDF5, ...

- **Other Modules Profiles**
 - profile/chem, profile/phys,

Support for OpenACC and CUDA Fortran

Fully optimized for M100 architecture

Here you can find a pre-built version of QE-GPU
Module environment – Compilers and libraries

For more detail, see the Marconi100 User Guide:
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.2%3A+MARCONI100+UserGuide
Building Quantum ESPRESSO

...if you don’t want to use the one in the modules, you can build in it on your own...

Ingredients:
- Source code (from:…)
- PGI compiler
- MPI (better Spectrum_MPI)
- Math libraries (better if you use OpenBLAS or ESSL)
- … some luck!

The recipe…
https://gitlab.com/QEF/q-e-gpu/-/wikis/Marconi-100
module load profile/global
module load pgi/19.10--binary
module load cuda/10.1
module load spectrum_mpi/10.3.1--binary

tar xjf q-e-gpu-gpu-develop.tar.bz2

cd q-e-gpu-gpu-develop

./configure CC=pgcc F77=pgf90 FC=pgf90 F90=pgf90
MPIF90=mpipgifort --enable-openmp --with-cuda=$CUDA_ROOT
--with-cuda-runtime=10.1 --with-cuda-cc=70

make -j pw
#!/bin/bash
#SBATCH --nodes=16 # number of nodes
#SBATCH --ntasks-per-node=4 # number of tasks per node
#SBATCH --ntasks-per-socket=2 # number of tasks per socket
#SBATCH --cpus-per-task=32 # number of HW threads per task
#SBATCH --gres=gpu:4 # gpus per node
#SBATCH --mem=230000MB
#SBATCH --time 01:00:00 # format: HH:MM:SS
#SBATCH -A YYYYMM
#SBATCH -p m100_usr_prod
#SBATCH -qos = ...
export

mpirun --map-by ppr:${SLURM_NTASKS_PER_NODE}:node:PE=${OMP_NUM_THREADS}
pw.x -npool 2 -ndiag 1 -inp file.in > file.out
How to get access to Marconi100

You can ask for computing hours on Marconi100 at Cineca with:

http://iscra.cineca.it

https://prace-ri.eu/hpc-access/

support@max-centre.eu

superc@cineca.it
THANKS

DRIVING THE EXASCALE TRANSITION