'

e

e

=

tion |

valuation wi

P T sy
. - A -~
- - - - -
- = - T T.
- ¥ +

R
pl
.
B .
-

+ +

Daniel Ruiz

April 18th, 2019

- +

-

-+

Enabling SVE evaluation with ArmlIE

HPCG introduction
« Optimizations

Tools
« DynamoRIO + ArmlE + scripts

Analysis
- Metrics of interest
— Instruction count
— Memory metrics
- Memory system impact
— Optimization advice

2 © 2019 Arm Limited a r m

HPCG

* Benchmark for ranking Top500 HPC systems

* HPCG’s kernels are representative of real-world
scientific applications ran on HPC machines,
computationally and data access pattern-wise

- E.g., Computational fluid dynamics (OpenFOAM),
computational photography

* Is not only about the FLOPS!
- Don’t worry, still used as Figure of Merit © “E)
- Along with the memory bandwidth

* Motivates improvements in our Arm Performance
Libraries

3 © 2019 Arm Limited a r m

HPCG

* Solves the linear system

Axx=r /’/o

B ComputeSYMGS
3levelsG | m8 ComputeSPMV

ComputeMG fecurston,

ComputeRestriction

B ComputeDotProduct

G ComputeProlongation

I ComputeSPMV

ComputeWAXPBY

Not parallelizable!
How can we do better?

4 © 2019 Arm Limited a r m

Optimizations...
Multi-level task dependency graph

03— Level 0 ©
Level 1 1

%ﬁ%&%p Level 2: 2, 4
Gi{f?<%>¢? Level 3 3, 5
0123 Level 4 6, 8

* Nodes in the same level of the graph can be processed in parallel. Level 5: /7, 9
* How to: Level 7. 10, 12
, Marknode 1 ssvisited Level 8: 11, 13

. gf:fkli\;?glrmlbors of nodes in previous level to see if dependencies are fulfilled Level O 14

1. Ifyes, add node to the level and mark node as visited Level 10 15

2. If no, continue with the next node
5. Close level, add new level and go to 4 if no more nodes to process
6. Reorder nodes by level

5 © 2019 Arm Limited a r m

More optimizations...

Block multi-coloring

6

Blocks with the same color can be processed in parallel.

How to:

2 13 14 15
(8910411
Jeaarseniet

o

NN

i
X
jtm
W
X
i
><>\h
i

m
pN
N
2
=

4

A
O
=
e

X

X
o-aier s

1. Group N consecutive nodes in blocks
2. Colorize blocks
3. Reorder blocks

© 2019 Arm Limited

arm

All the (parallelism) optimizations!
Merging all together

HHEEED Finest level
i (multi-level task
ikt dependency graph)

................

................

Coarser levels

(block multi-coloring)

Further information about our code in the Arm blog:
https://community.arm.com/developer/tools-

, 2015 Aren Lt software/hpc/b/hpc-blog/posts/parallelizing-hpcg arm

https://community.arm.com/developer/tools-software/hpc/b/hpc-blog/posts/parallelizing-hpcg

Putting the optimizations to the test

Parallelizing the main kernels mbaseline m Optimized NEON
improves application scalability. 0

200

150

* Higher gap in performance

expected at higher core count. .
e Results presented at SC18 1 II II II

- Positive feedback from the community.

Performance [GFLOPS]
o

(]
o

Nodes

Baseline (MPI-only): Optimized NEON:
* 56 MPI ranks per node e 8 MPI ranks per node
e 7 OpenMP threads per MPI rank

8 © 2019 Arm Limited a r m

arm - Tools

bynarﬁoRIO & ArrﬁIE

DynamoRIO & ArmlE

Armv8-A + SVE Binary

Arm Instruction Emulator

r SVE Memtrace Client
DynamoRIO (ArmilE)
[Emulation Client]
& SVE Inscount Client

t Y N
"

SVE Opcodes Client

SVE custom clients Emulation API

10 © 2019 Arm Limited a r m

Why ArmIE?

Because ArmlE is:

v’ Fast functional emulator
(enables apps with large inputs runs)

v’ Easy to use and develop
(allows custom instrumentation and post-processing)

v’ Freely available

v’ Partly open-source(API to build your
own instrumentation)

11 © 2019 Arm Limited

ArmlE is not:

X Cycle accurate

(no timing information)

X A simulator
(Requires Armv8 hardware)

X Architecture modelling
(Is all about the apps)

arm

ArmlE under the covers

* Compile application with SVE-capable compiler and run it through ArmlE:
- $ armie -msve-vector-bits=512 -i libinscount _emulated.so -- ./sve_app

* Use Region-of-Interest (Rol) markers in the code to delimit instrumentation
- Not all clients

* Three SVE-ready instrumentation clients come pre-packaged in latest ArmIE version:

SVE Inscount

SVE Opcodes

SVE Memtrace

More info in the Arm blog:

https://community.arm.com/developer/tools-software/hpc/b/hpc-
blog/posts/emulating-sve-on-armv8-using-dynamorio-and-armie

12 © 2019 Arm Limited a r m

https://community.arm.com/developer/tools-software/hpc/b/hpc-blog/posts/emulating-sve-on-armv8-using-dynamorio-and-armie

Metrics of interest

What we ran

2 HPCG versions:

* Baseline
- What everyone gets to try out

* Optimized
- Multi-Level Task dependency and Block coloring optimizations
« Other minor performance improvements (loop fusion/unroll, memory allocations, etc.)

* All versions are compiled with the Arm HPC Compiler 19.0.

14 © 2019 Arm Limited a r m

Instruction client

* Counts dynamically executed instructions

« Total instructions
« SVE instructions

* The metric can be used to know how well the compiler was able to vectorize
- Also to compute the reduction in terms of instructions

* Full inscount of SVE application (512-bit vectors):

$ armie -msve-vector-bits=512 -i libinscount emulated.so -- ./sve example

83971 instructions executed of which 22 were SVE instructions

15 © 2019 Arm Limited a r m

Counting instructions

16

Instruction count client

© 2019 Arm Limited

% Dynamic total instructions

140

120

100

80

60

40

20

128

%SVE/%non-SVE instructions, relative to 128b

256

512

1024

Vector Length (bits)

m optimized %non-sve
I optimized %sve

W baseline %non-sve

W baseline %sve

2048

arm

Compiler auto-vectorization analysis

Vectorized loops * GCC and Arm HPC Compiler:

Compiler : -
’ baseline optimized - Reverse loops are not vectorized.

* Intel Compiler:
« Considers outer loops, ends up vectorizing inner loops.

for (int j = ©; j < nnzInChunk; j++) { for (int j = nnzInChunk-1; j >= 0; j--) {
sum@ -= mtxVal[i+@][j] * xv[mtxInd[i+0][j] 1; sum3 -= mtxVal[i-3][j] * xv[mtxIndL[i-3][F]1 1;
suml -= mtxVal[i+1][j] * xv[mtxInd[i+1]1[j] 1; sum2 -= mtxVal[i-2][j] * xv[mtxIndL[i-2][F]1 1;
sum2 -= mtxVal[i+2][j] * xv[mtxInd[i+2]1[j] 1; suml -= mtxVal[i-1][j] * xv[mtxIndL[i-1][F]1 1;
sum3 -= mtxVal[i+3][j] * xv[mtxInd[i+3][]] 1; sum@ -= mtxVal[i-0][j] * xv[mtxIndL[i-0][F] 1;
} }

17 © 2019 Arm Limited a r m

Memory trace client

* Based on the existing DR memtrace _simple client

AArch64 tracing done by DR

SVE tracing is done separately by ArmlE

Trace inside a Region-of-interest (Rol) through markers in the code
#define _ START TRACE() { asm volatile (".inst 0x2520e020"); }

#define _ STOP_TRACE() { asm volatile (".inst 0x2520e040"); }

Two trace files are generated (AArch64 and SVE trace files)
- A shared synchronised counter is used to number ArmIE and DR traces in order to record the correct

temporal sequence between the two traces
- Merging both traces (post-process) results in the complete trace inside the Rol

18 © 2019 Arm Limited a r m

SVE Memory Tracing Client

e Memtrace format:

sequence number Thread ID SVE Bundle isWrite Datasize Dataaddress PC

Shared counter that Identifies a contiguous access

Write/read

ensures correct trace or a gather/scatter bundle :
operation

order (and the element position)

* ArmlE command example (512-bit vector):

$ armie -e libmemtrace sve 512.so -i libmemtrace emulated.so -- ./sve example

« AArch64 output => memtrace.sve_example.26213.0000.log

- SVE output => sve-memtrace.sve_example.26213.0000.log

19 © 2019 Arm Limited a r m

Merging Traces

* AArch64 and SVE memory traces facilitate merging and analysis

« Counter parameter for merging

« Rol markers are included in the SVE trace to prune unwanted traces (same format as the trace)

- ThreadID field is -1 for the Rol start BN P I RO I (N D RN (F N D)

- ThreadID field is -2 for the Rol stop X I S N - TN R D TN F B D)

* A different separator after the counter identifies the origin of the trace

- Colon (:) symbol for AArch64 traces [I I I P)7 b & o (Y IRV 21 L% e
-« Comma (,) symbol for SVE traces 20, 0, 0, 0, 64, 0x4200d4, 0Ox40058cC

20 © 2019 Arm Limited a r m

Parsing Traces

* The merged traces can be parsed to better understand the memory accesses

- Higher verbosity / better readability or by extracting metrics

Occurrence count
Type Label

L 1.#1 (64B) [0x4200d4] @ Ox40058c - vec_util = 100%
L 2.#1 (64B) [0x42002c] @ Ox400590 - vec_util = 100%
L 3.#1 Bundle #0 started (4B) [0x42002c] @ ©x400594
L 3.#16 Bundle #0 ended [0x42002c] -> 16 accesses (64B) - vec util = 100%

The bundle only has contiguous accesses

Bundle info — ,

Bundle stride = 4B
The following addresses were accessed repeatedly in the bundle:
> 0x42002c, x16

--- S 1.#1 (64B) [0x42017c] @ Ox40059c - vec_util = 100%

Size Address PC
Load/Store
21 © 2019 Arm Limited

arm

Studying SVE memory accesses

e \ector utilization [extracted from memory traces]

% Vector utilization @512b VL

Avg. Vector 090
utilization

Version

° o
s 8

8

% of accesses

©
W
o

0.20

0.00
0%-33% 34% -99% 100%
% of vector utilized

MW baseline M optimized

22 © 2019 Arm Limited a r m

Looking at the memory accesses

* Memory accesses present similar
characteristics 450

Memory instructions breakdown @ 512b VL

~60% SVE

40% A
35% l \
* Further work could be done to °
decrease the usage of i
gathers/scatters Y
°° nil.

SVE SVE SVE SVE non-SVE
Contiguous Contiguous Gather/Scatter Gather/Scatter
All lanes enabled w/ lanes disabled All lanes enabled w/ lanes disabled

% accesses
= Us—_l N m w
T £ 8§ £ B

]
X

o
X

M baseline M optimized

23 © 2019 Arm Limited a r m

Insights

* Poor vector utilization

- Short loops?
- Conditional statements?

* Too many gather/scatters
- Contiguous loads/stores are preferred
- Can data be reorganized?

Low percentage of SVE memory accesses
- How good was vectorization?

Compare against non-SVE executions
- i.e., NEON

24 © 2019 Arm Limited a r m

SVE Cache Simulator

* A simple modular cache simulator for SVE memory traces

e Supports a single-core multi-level cache system
ArmlE SVE tracing has compatibility issues with multithreaded applications

e Supports prefetcher plugins
A simple stride prefetcher is currently available

25 © 2019 Arm Limited a r m

Looking at cache

Cache simulator parameters

0 u 1 13

Data cache hit ratios (512b VL)

100%

Cache Size (KB) 64 1024 2048
90% Line Size (#words) 16 16 16
Word Size (Bytes) 4
80% Set Size (n-ways) 32
Latency (cycles) 60
70% Memory Latency (cycles)
Stride prefetcher to L1
60% L
i 50% Avg # cycles per memory access (512b VL)
35
40%
30
30% 25
§ 20
20% L% 15
10
10%
. 5
0% 0
L1 hit ratio L2 hit ratio L3 hit ratio Cycles/access
M baseline M optimized W baseline M optimized

26 © 2019 Arm Limited a r m

ArmIE methodology Compiler auto:

] vectorization
Overview analysis

e Cache simulator
Statistics

Dynamic
instruction count &
%SVE utilization

(obtained from ArmlE)

(enabled by ArmlIE and
post-processing)

The metrics you can get:

Dynamic instruction count

%SVE utilization
Vector utilization &

types of SVE
memory accesses Optimized

(derived from ArmlE) HPCG

%SVE contiguous memory
accesses or gather/scatter
L1S hit rate

Variations avg. #cycles per

memory aCcess

27 © 2019 Arm Limited a r m

ArmIE Roadmap

28

ArmlE 19.0 is to be released in the next few days

Improved clients and a new instruction trace client planned for 19.1

Mostly bug fixes

With improvements to region-of-interest and client options

Planning for future versions:

Better multi-thread support
Emulation APl updates

Debug functionality

© 2019 Arm Limited

arm

Final remarks

* ArmlE enables SVE evaluation with more realistic input sizes

- Emulation overhead depends on the number of SVE instructions
- Non-SVE instructions have near-zero overhead
- SVE Application test and validation is now possible without simulators.

* Evaluation depends on time-agnostic metrics
- Instruction counts, memory traces, etc.
- Need to look at all the metrics, they have little value by their own
- Possibility to create custom clients using the emulation API
- Post-processing can extract fine-grain metrics

* ArmlE does not replace simulators
- All tools have its purpose

29 © 2019 Arm Limited a r m

arm

© 2019 Arm Limited

" Thank You
DPERLE
Merci

C - 15T
HYMES

- Gracias
. Kiitos
T Are L Cf
Tegdlq
1584

AT

