
MaX “Materials Design at the Exascale”, has received funding from the European Union’s Horizon 
2020 project call H2020-INFRAEDI-2018-1, grant agreement 824143

Scientific software and libraries for 
electronic structure community

MaX webinar, 24 June 2020



Anton Kozhevnikov
Scientific Software & 
Libraries Group Lead

CSCS

Shoshana Jakobovits
Software Engineer

CSCS

Marko Kabic
Software Engineer

CSCS

Simon Frasch
Software Engineer

CSCS

Webinar is represented by



Swiss National Supercomputing Centre – CSCS



Piz Daint supercomputer at CSCS

2013 - first installation
Cray XC30: 5272 nodes of 8-core Intel 
SandyBridge@2.6GHz + NVIDIA K20X
Peak performance: 6.271 Petaflops

2016 - upgrade
Cray XC50: 5704 nodes of 12-core Intel 

Haswell@2.6GHz + NVIDIA P100
Peak performance: 21.230 Petaflops



Material science codes at CSCS

How CSCS can help community in porting scientific applications 
to novel architectures?

● CP2K
○ Localized Gaussian basis set
○ Sparse matrix multiplication for O(N) method
○ Dense eigen-solver for diagonalization-based SCF
○ Dense matrix multiplication for RPA calculation
○ FFTs

● Quantum ESPRESSO
○ Delocalized plane-wave basis set
○ FFTs
○ Davidson iterative subspace diagonalisation

■ dense eigen-solver
■ dense linear algebra



Porting scientific codes to GPUs

Scientific community applications are typically:

● monolithic all-in-one Fortran90
● MPI (with OpenMP) implementation
● ignorant of GPU

Usual steps of porting such applications to GPU:

● cleanup and refactor the code
● (probably) change the data layout
● fully utilize CPU threads (this helps to understand the compute-intensive kernels of the 

application) 
● move compute-intensive kernels to GPU

○ OpenACC
○ OpenMP >= 4.5
○ CUDA with ISO_C_BINDING or Cuda-Fortran
○ OpenCL



Separation of work
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CSCS vision: complexity of current and emerging HPC platforms and programming 

models should be reflected in the way we develop scientific software.



DBCSR library
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COSMA library
Marko Kabic



Motivation

Yet another matrix multiplication?



Motivation

Efforts to achieve communication-optimality:



Evaluation
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SCALAPACK-wrapper

- Follow the 30 seconds tutorial: https://github.com/eth-
cscs/COSMA#using-cosma-in-30-seconds

https://github.com/eth-cscs/COSMA#using-cosma-in-30-seconds


SCALAPACK-wrapper

- Follow the 30 seconds tutorial: https://github.com/eth-
cscs/COSMA#using-cosma-in-30-seconds

COMPILE COSMA

➔ git clone --recursive

https://github.com/eth-cscs/COSMA cosma 

&& cd cosma

➔ mkdir build && cd build

➔ cmake -DCOSMA_BLAS=CUDA 

-DCOSMA_SCALAPACK=MKL

-DCMAKE_INSTALL_PREFIX=<install-dir>

..

➔ make -j 8

➔ make install

https://github.com/eth-cscs/COSMA#using-cosma-in-30-seconds
https://github.com/eth-cscs/COSMA


SCALAPACK-wrapper

- Follow the 30 seconds tutorial: https://github.com/eth-
cscs/COSMA#using-cosma-in-30-seconds

COMPILE COSMA

➔ git clone --recursive

https://github.com/eth-cscs/COSMA cosma 

&& cd cosma

➔ mkdir build && cd build

➔ cmake -DCOSMA_BLAS=CUDA 

-DCOSMA_SCALAPACK=MKL

-DCMAKE_INSTALL_PREFIX=<install-dir>

..

➔ make -j 8

➔ make install

LINK TO COSMA

# link to COSMA, before any SCALAPACK

➔ LIBS += -L<install-dir>/lib64 

-lcosma_pxgemm

-lcosma -lgrid2grid 

-lTiled-MM 

-lcublas -lcudart -lrt

# include headers

➔ INCS += -I<install-dir>/include

https://github.com/eth-cscs/COSMA#using-cosma-in-30-seconds
https://github.com/eth-cscs/COSMA


SCALAPACK-wrapper

used in CP2K

COMPILE COSMA

➔ git clone --recursive

https://github.com/eth-cscs/COSMA cosma 

&& cd cosma

➔ mkdir build && cd build

➔ cmake -DCOSMA_BLAS=CUDA 

-DCOSMA_SCALAPACK=MKL

-DCMAKE_INSTALL_PREFIX=<install-dir>

..

➔ make -j 8

➔ make install

LINK TO COSMA

# link to COSMA, before any SCALAPACK

➔ LIBS += -L<install-dir>/lib64 

-lcosma_pxgemm

-lcosma -lgrid2grid 

-lTiled-MM 

-lcublas -lcudart -lrt

# include headers

➔ INCS += -I<install-dir>/include

https://github.com/eth-cscs/COSMA


SCALAPACK-wrapper

used in CP2K

COMPILE COSMA

➔ git clone --recursive

https://github.com/eth-cscs/COSMA cosma 

&& cd cosma

➔ mkdir build && cd build

➔ cmake -DCOSMA_BLAS=CUDA 

-DCOSMA_SCALAPACK=MKL

-DCMAKE_INSTALL_PREFIX=<install-dir>

..

➔ make -j 8

➔ make install

LINK TO COSMA

# link to COSMA, before any SCALAPACK

➔ LIBS += -L<install-dir>/lib64 

-lcosma_pxgemm

-lcosma -lgrid2grid 

-lTiled-MM 

-lcublas -lcudart -lrt

# include headers

➔ INCS += -I<install-dir>/include

user code untouched!

https://github.com/eth-cscs/COSMA
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SpFFT library
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SpFFT
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SpFFT library

Design goals:

● Distributed 3D FFT computation with sparse input

● Resource reuse for transforms of different sizes

● Support for shifted indexing with centered zero-frequency

● Full use of Hermitian symmetry for complex-to-real transforms

Implementation:

● Written in C++11 

● Only mandatory dependency: Library providing a FFTW 3.x interface

● Optional parallelization and acceleration with:

○ OpenMP

○ MPI

○ CUDA or ROCm



SpFFT - Data Decomposition

Slab decomposition:

Pencil decomposition:



SpFFT - Data Decomposition

Flexible pencil decomposition Slab decomposition

Advantages:
● Less constraints on the distribution of sparse input data
● Better suited for GPU acceleration

Disadvantages:
● Distribution of dense datta is limited by the size of one dimension

SpFFT uses a mixed decomposition:



SpFFT - Data exchange

Three MPI exchange methods are supported:

● MPI_Alltoall

○ Fixed message sizes

○ Typically best optimized for large number of ranks

● MPI_Alltoallv

○ Adapts to non-uniform data distribution with variable message sizes

● MPI_Alltoallw

○ Manual packing / unpacking of data before exchange can be avoided by using 

custom data types for each message

Additional features:

• Optional use of conversion to / from single precision for MPI exchange step

• CUDA aware MPI with GPUDirect to avoid data transfer between host and device



SpFFT - Interface

The interface is based on two constructs:

Grid

• Allocates memory for transforms up to a given maximum size

• Transforms of different sizes can be executed on the same grid, allowing for 

memory reuse

Transform

• Associated to a reference counted grid

• Created with frequency (Miller) indices of sparse input data

• For GPU acceleration: Accepts host and device pointers. Output can be 

selected to be placed on host or device memory. 

Note: No CUDA or ROCm API is exposed to the user.



SpFFT - Example
! Create grid, which allocates necessary resources
spfft_grid_create_distributed(grid, dffts%nr1, dffts%nr2, dffts%nr3,&

dffts%nsp(dffts%mype+1), dffts%my_nr3p,&
SPFFT_PU_HOST, 1, MPI_COMM_WORLD, SPFFT_EXCH_BUFFERED)

! Create transform on grid with Miller indices
spfft_transform_create(transform, grid, SPFFT_PU_HOST, SPFFT_TRANS_C2C,&

dffts%nr1, dffts%nr2, dffts%nr3, dffts%my_nr3p,&
size(mill)/3, SPFFT_INDEX_TRIPLETS, mill)

! Grids are reference counted. Can be safely destroyed, since resources are only freed
! after associated transforms have been destroyed as well.
spfft_grid_destroy(grid)

! Memory for storing real space data is provided by transform.
! Must be translated from a C pointer.
spfft_transform_get_space_domain(transform, SPFFT_PU_HOST, psic_ptr)
call c_f_pointer(psic_ptr, psic, [n])

! Transform nbnd times forward and backwards.
do ib = 1, nbnd, 1

spfft_transform_backward(transform, psi(:,ib), SPFFT_PU_HOST)

! Work on real space data here...

spfft_transform_forward(transform, SPFFT_PU_HOST, hpsi(:,ib), SPFFT_FULL_SCALING)
enddo

! All resources are freed by destroying the only / last transform
spfft_transform_destroy(transform)



SpFFT - Benchmark

Benchmark:
● FFTW is executed with transposed output  (only one internal MPI call necessary)
● GPU node: Intel Xeon E5-2690 v3 (12 cores),  Nvidia Tesla P100
● Multi-Core node: 2x Intel Xeon E5-2695 v4 (2 x 18 cores)



SpFFT vs QE

Timings with single thread per rank: Multi-thread scaling with two MPI ranks:

Size: 243 x 384 x 576
Density: 34%



SIRIUS library
Anton Kozhevnikov



Motivation for a common plane-wave DFT library

• Many similar full-potential LAPW codes (Exciting, Elk, FLEUR, Wien2k)
• Many similar pseudopotential PW codes (Quantum ESPRESSO, Abinit,

VASP)
• Core DFT functionality is the same (compute total energy, magnetic

moments, stress tensor, forces)
• A lot of common functionality between FP-LAPW and PP-PW methods

Accelerating and writing architecture backends for individual DFT
codes is a waste of resources.

It is much more efficient to focus on the development of a common
DFT functionality and create interfaces to various electronic-structure
codes.



SIRIUS library

SIRIUS is a domain specific library organized as a
collection of C++ classes that abstract away the
different building blocks of PW and LAPW codes.
The library is written in C++11 with MPI, OpenMP
and CUDA/ROCm programming models.
https://github.com/electronic-structure/SIRIUS
https://electronic-structure.github.io/SIRIUS-doc/

git clone --recursive https://github.com/electronic-

structure/SIRIUS.git

mkdir SIRIUS/build

cd SIRIUS/build

cmake .. -DCMAKE_INSTALL_PREFIX=$HOME/local

make -j install

https://github.com/electronic-structure/SIRIUS
https://electronic-structure.github.io/SIRIUS-doc/


Supported functionality

Features

Pseudopotential Full-potential Common

● NC/US/PAW pseudopotentials
● Collinear and non-collinear 

magnetism
● Hubbard U correction
● Spin-orbit coupling
● Stress tensor
● Atomic forces
● Verification of S-operator matrix
● Iterative Davidson and exact 

diagonalization solvers
● Orbital transformation (wave-

function optimisation) method

● L(A)PW+lo method with 
arbitrary number of local 
orbitals

● Collinear and non-collinear 
magnetism with second 
variational approach

● Iterative Davidson and 
exact diagonalization 
solvers 

● Spin-orbit coupling
● Atomic forces

● Python frontend
● Symmetrization of lattice-periodic 

functions and on-site matrices (using 
symmetries from spglib)

● Generation of k-point mesh using spglib
● Run-time control of the eigenvalue 

solvers (Lapack / MAGMA / ScaLAPACK / 
ELPA)

● Run-time control of the BLAS provider 
(CPU BLAS / cuBlas / cuBlasXt)



SIRIUS library design

SIRIUS

BLAS

LAPACK

ScaLAPACK

ELPA spglib GSL HDF5 libvdwxc

LibXC

CUDA

cuBLAS, cuSolve, cuFFT

ROCm

rocBLAS, rocFFT

Magma

SpFFT

FFTW

QE CP2K i-PI Exciting

DFT_ground_state

Potential Density Band Stress K_point

Wave_functions

Beta_projector
s

Hamiltonian

Field4D Mixer

Periodic_function
Forces



GPU acceleration of Quantum ESPRESSO

https://github.com/electronic-structure/q-e-sirius
• Always in sync with main QE repository
• Used in production at CSCS

https://github.com/electronic-structure/q-e-sirius


PW functionality in CP2K



LiF with UPF or GTH pseudopotentials

&FORCE_EVAL
METHOD SIRIUS
&PW_DFT

&PARAMETERS
ELECTRONIC_STRUCTURE_METHOD  pseudopotential
SMEARING_WIDTH 0.025
USE_SYMMETRY true
GK_CUTOFF 6.0
PW_CUTOFF 20.00
ENERGY_TOL 1e-6
NGRIDK 2 2 2

&END PARAMETERS
&END PW_DFT
&DFT

&XC
...

&END XC
&END DFT

&END FORCE_EVAL
&SUBSYS
...
&END SUBSYS
&GLOBAL
...
&END GLOBAL

&SUBSYS
&CELL

A [bohr] 0.0 3.80402 3.80402
B [bohr] 3.80402 0.0 3.80402
C [bohr] 3.80402 3.80402 0.0

&END CELL
&COORD

SCALED
Li 0.0 0.0 0.0
F 0.5 0.5 0.5

&END COORD
&KIND Li

POTENTIAL UPF "Li.pz-s-kjpaw_psl.0.2.1.UPF.json"
&END KIND
&KIND F

POTENTIAL GTH-LDA-q11
&END KIND

&END SUBSYS



CP2K/SIRIUS output example 

Charges and magnetic moments

--------------------------------------------------------------------------------

total charge          :  10.000000

Energy

--------------------------------------------------------------------------------

valence_eval_sum          :        -4.33328910

<rho|V^{XC}>              :        -8.47838592

<rho|E^{XC}>              :        -7.00804097

<mag|B^{XC}>              :         0.00000000

<rho|V^{H}>               :        17.65751990

one-electron contribution :       -13.47059366 (Ha),       -26.94118732 (Ry)

hartree contribution      :         8.82875995

xc contribution           :        -7.00804097

ewald contribution        :       -20.48430223

PAW contribution          :        -4.52435252

Total energy              :       -36.65852943 (Ha),       -73.31705886 (Ry)

band gap (eV) :         9.07701505

Efermi        :         0.22500000

iteration :  15, RMS 1.424969998675E-09, energy difference : 6.240623875442E-07

converged after 16 SCF iterations!

ENERGY| Total FORCE_EVAL ( SIRIUS ) energy (a.u.):          -36.658529429377616



CP2K input reference

Full documentation is available here:
https://manual.cp2k.org/cp2k-7_1-branch/CP2K_INPUT/FORCE_EVAL/PW_DFT.html

https://manual.cp2k.org/cp2k-7_1-branch/CP2K_INPUT/FORCE_EVAL/PW_DFT.html


THANKS

Q&A


