DRIVING
THE EXASCALE
TRANSITION

MaX webinar, 24 June 2020

MaX “Materials Design at the Exascale”, has receive ding from the European Union’s Horizon
2020 project call H2020-INFRAEDI-2018-1, grant ag# ent 824143

Webinar is represented by

Anton Kozhevnikov Shoshana Jakobovits Marko Kabic Simon Frasch
Scientific Software & Software Engineer Software Engineer Software Engineer
Libraries Group Lead CSCS CSCS CSCS

CSCS

DRIVING
TRANSITION

Swiss National Supercomputing Centre — CSCS

DRIVING
MAX THE EXASCALE
TRANSITION

Piz Daint supercomputer at CSCS

2013 - first installation
Cray XC30: 5272 nodes of 8-core Intel
SandyBridge@2.6GHz + NVIDIA K20X
Peak performance: 6.271 Petaflops

2016 - upgrade
Cray XC50: 5704 nodes of 12-core Intel
Haswell@2.6GHz + NVIDIA P100
Peak performance: 21.230 Petaflops

Material science codes at CSCS

Mechanics &

Engmeenng 8% Others e CP2K

% O Localized Gaussian basis set
O Sparse matrix multiplication for O(N) method
hem|str . o Dense eigen-solver for diagonalization-based SCF
Materlals38% o Dense matrix multiplication for RPA calculation
O FFTs
® Quantum ESPRESSO
e Science O Delocalized plane-wave basis set
— T O FFTs
o Davidson iterative subspace diagonalisation
m dense eigen-solver
m dense linear algebra

Earth & Enwronmental
Smence 13%

Physics

26%

How CSCS can help community in porting scientific applications
to novel architectures?

DRIVING
TRANSITION

Porting scientific codes to GPUs

Scientific community applications are typically:

e monolithic all-in-one Fortran90
e MPI (with OpenMP) implementation
® ignorant of GPU

Usual steps of porting such applications to GPU:

® cleanup and refactor the code
e (probably) change the data layout
e fully utilize CPU threads (this helps to understand the compute-intensive kernels of the

application)
® move compute-intensive kernels to GPU
o OpenACC
o OpenMP>=4.5
o CUDA with ISO_C_BINDING or Cuda-Fortran
o OpenCL

DRIVING
MAX THE EXASCALE
TRANSITION

Separation of work

CSCS vision: complexity of current and emerging HPC platforms and programming
models should be reflected in the way we develop scientific software.

Domain Domain
scientists scientists Computational
Il scientists

Scientific code

Scientific code evolve into \‘

Domain-specific
libraries
“Classical” HPC Architecture Architecture Architecture
platform 1 ; N

DBCSR library

Shoshana Jakobovits

DRIVING
MAX THE EXASCALE
TRANSITION

COSMA library
Marko Kabic

Motivation

Yet another matrix multiplication?

DRIVING
TRANSITION

Efforts to achieve communication-optimality:

rectangular
matrices

pattern

=

wn

o)

QO

@)

-

o decomp. of

g all matrices

E enchanced
0 communication
(@]

=

1994

<1969 1969

use of excess

memory

1997

matrices

2.5D & 3D

optimal
decomp. in

optimized for
\66\ [non-square] [

N
W \'6’3
oV

L\Y .

2011

C 4y

2013

all scenarios]

>
005;:6\

2019 Year
Figure 2: lllustratory evolution of MMM algorithms reaching the 1/0 lower bound.

DRIVING
MAX THE EXASCALE
TRANSITION

Evaluation

EVALUATION
Total communication volume for “largeK”

matrices

a 1,024 4 o 256 :
& LAPACK [14
® +— Sca CK [14] o 1241 | ScalAPACK o CTE +—ScalLAPACK
o L 1 181 - A
S 4,096 .. 4 CTF[9] 8 sz 4 3 ¢ o 8 / . L e
8 2.048- s & . , | & 362 —t ¢ 8 s o &
-] L R O CTF CARMA o .
£ 1448~ L A a % 256 1 = g * s
A &]
§ 1,024 - °, ¢ | W, P \ § 80 L 2P
£ 72 . CARMA [21] E % . oo | E 54 4 _ CARMA
8 s12- / 8 904 N wo?® 8
QD ** e, QD ai, '\° Q s, " COSMA (this work) .
COSMA (this work) 45 e ° oo o
1 % COSMA (this wark) 32 @ S0
128 256 512 1,024 2048 128 256 512 1,024 2,048 128 256 512 1,024 2,048
of cores # of cores # of cores

(a) Strong scaling, n = m =17,408, k = 3,735,552

1
(b) Limited memory,m = n = 979p3, k =1.184p

2
3

2
(c) Extra memory,m = n = 979p9, k =1.184p

4
9

Vlower = better

Evaluation

EVALUATION

% of achieved peak performance for “largeK” matrices

T higher = better

COSMA (this work) - 60-
e N ') ' COSMA (this work)
= A 31 WLt 8 ‘
= COSMA (this work) g NV G e £
£ I\ "" ! E /‘ : g 40+
S0 o4 CTR— /A | £) CARMA : § LCARMA
@ _ - i . g | l @ g . .
a o)) A A v o
x - % 4ScalAPACK | g [| % Scal APACK i~ 1
g_ Y g A e N t 4 . l g 204 44 3 - i 4 .|| all A&
S5 |y . . 2 20 A J [[2 AN Nt W W\
& . \ & /l { 38) ¥ A i I‘ II * ||l| ! } ! ',, J Ill ', :. f
| CARMA "\ v VAN | Y = CTF aSWERY =4,
l |II * | \ W% " = \ —t
// Scal APACK .| CTF el S ol ©oNd]
° 4,006 8.192 16,564 256 1,024 4,096 16,384 256 1,024 4,096 16,384
of cores # of cores

of cores

2 4
3 9

2
(c) Extramemory,m = n = 979p 9, k =1.184p

DRIVING
TRANSITION

. 1
(a) Strong scaling, n = m =17,408, k = 3,735,552 (b) Limited memory, m = n = 979p3, k =1.184p

Portability and Usability

YOUR
CODE

Portability and Usability

FRONTEND

' COSMA LAYOUT
CUSTOM LAYOUT

SCALAPACK
LAYOUT
C/C++ FORTRAN
INTERFACE INTERFACE

DRIVING
MAX THE EXASCALE
TRANSITION

Portability and Usability

BACKEND

FRONTEND

COSMA LAYOUT

CUSTOM LAYOUT
SCALAPACK

T
e

=

C/C++ FORTRAN
INTERFACE INTERFACE

DRIVING
MAX THE EXASCALE
TRANSITION

Portability and Usability

FRONTEND BACKEND

COSMA LAYOUT

&N
7 N\

C/C++ FORTRAN
INTERFACE INTERFACE

DRIVING
MAX THE EXASCALE
TRANSITION

SCALAPACK-wrapper

- Follow the 30 seconds tutorial: https://github.com/eth-
cscs/COSMAHuUsing-cosma-in-30-seconds

DRIVING
TRANSITION

https://github.com/eth-cscs/COSMA#using-cosma-in-30-seconds

SCALAPACK-wrapper

- Follow the 30 seconds tutorial: https://github.com/eth-
cscs/COSMAHuUsing-cosma-in-30-seconds

COMPILE COSMA

git clone --recursive

&& cd cosma

mkdir build && cd build

cmake -DCOSMA_BLAS=CUDA
-DCOSMA_SCALAPACK=MKL
-DCMAKE_INSTALL PREFIX=<install-dir>

make -j 8
make install

DRIVING
MAX THE EXASCALE
TRANSITION

https://github.com/eth-cscs/COSMA#using-cosma-in-30-seconds
https://github.com/eth-cscs/COSMA

SCALAPACK-wrapper

Follow the 30 seconds tutorial: https://github.com/eth-
cscs/COSMA#using-cosma-in-30-seconds

COMPILE COSMA LINK TO COSMA

git clone --recursive # link to COSMA, before any SCALAPACK
LIBS += -L<install-dir>/1ib64

&& cd cosma -1lcosma_pxgemm

mkdir build && cd build -lcosma -1lgrid2grid

cmake -DCOSMA_ BLAS=CUDA -1Tiled-MM
-DCOSMA_SCALAPACK=MKL -lcublas -lcudart -1lrt
-DCMAKE_INSTALL PREFIX=<install-dir>
.. # include headers

make -j 8 INCS += -I<install-dir>/include

make install

DRIVING
MAX THE EXASCALE
TRANSITION

https://github.com/eth-cscs/COSMA#using-cosma-in-30-seconds
https://github.com/eth-cscs/COSMA

SCALAPACK-wrapper

mm) used in CP2K

https://github.com/eth-cscs/COSMA

SCALAPACK-wrapper

mm) used in CP2K mm=) user code untouched!

https://github.com/eth-cscs/COSMA

Portability and Usability

BACKEND

FRONTEND

&N
7 N\

C/C++ FORTRAN
INTERFACE INTERFACE

DRIVING
MAX THE EXASCALE
TRANSITION

Portability and Usability

A L B B

SpFFT library

Simon Frasch

—
_

1

47
.

DRIVING
MAX THE EXASCALE
TRANSITION

SpFFT library

Design goals:

e Distributed 3D FFT computation with sparse input

e Resource reuse for transforms of different sizes

e Support for shifted indexing with centered zero-frequency

e Full use of Hermitian symmetry for complex-to-real transforms

Implementation:

® Written in C++11
e Only mandatory dependency: Library providing a FFTW 3.x interface
e Optional parallelization and acceleration with:

o OpenMP

o MPI

o CUDA or ROCm

SpFFT - Data Decomposition

Slab decomposition: .

Pencil decomposition:

SpFFT - Data Decomposition

SpFFT uses a mixed decomposition:

Flexible pencil decomposition Slab decomposition

Advantages:
® Less constraints on the distribution of sparse input data
® Better suited for GPU acceleration

Disadvantages:
e Distribution of dense datta is limited by the size of one dimension

DRIVING
MAX THE EXASCALE
TRANSITION

SpFFT - Data exchange

Three MPI exchange methods are supported:

e MPI_Alltoall
O Fixed message sizes
o Typically best optimized for large number of ranks

e MPI_Alltoallv
O Adapts to non-uniform data distribution with variable message sizes

e MPI_Alltoallw
O Manual packing / unpacking of data before exchange can be avoided by using

custom data types for each message

Additional features:

Optional use of conversion to / from single precision for MPI exchange step
CUDA aware MPI with GPUDirect to avoid data transfer between host and device

DRIVING
TRANSITION

SpFFT - Interface

The interface is based on two constructs:
Grid

e Allocates memory for transforms up to a given maximum size
e Transforms of different sizes can be executed on the same grid, allowing for
memory reuse

Transform

e Associated to a reference counted grid

e Created with frequency (Miller) indices of sparse input data

e For GPU acceleration: Accepts host and device pointers. Output can be
selected to be placed on host or device memory.
Note: No CUDA or ROCm API is exposed to the user.

DRIVING
TRANSITION

SpFFT - Example

I Create grid, which allocates necessary resources

spfft_grid_create_distributed(grid, dffts%nri1, dffts%nr2, dffts%nr3,&
dffts%nsp(dfftswmype+1), dffts%my_nr3p,&
SPFFT_PU_HOST, 1, MPI_COMM_WORLD, SPFFT_EXCH_BUFFERED)

I Create transform on grid with Miller indices

spfft_transform_create(transform, grid, SPFFT_PU_HOST, SPFFT_TRANS_C2C,&
dffts%nri1, dffts%nr2, dffts%nr3, dffts%my_nr3p,&
size(mill)/3, SPFFT_INDEX_TRIPLETS, mill)

I Grids are reference counted. Can be safely destroyed, since resources are only freed
I after associated transforms have been destroyed as well.
spfft_grid_destroy(grid)

I Memory for storing real space data is provided by transform.

I Must be translated from a C pointer.
spfft_transform_get_space_domain(transform, SPFFT_PU_HOST, psic_ptr)
call c_f_pointer(psic_ptr, psic, [n])

I Transform nbnd times forward and backwards.
do ib = 1, nbnd, 1
spfft_transform_backward(transform, psi(:,ib), SPFFT_PU_HOST)

I Work on real space data here...

spfft_transform_forward(transform, SPFFT_PU_HOST, hpsi(:,ib), SPFFT_FULL_SCALING)
enddo

I All resources are freed by destroying the only / last transform

Lspfft_transform_destroy(transform)

DRIVING
THE EXASCALE
TRANSITION

SpFFT - Benchmark

Benchmark:

e FFTW is executed with transposed output (only one internal MPI call necessary)
® GPU node: Intel Xeon E5-2690 v3 (12 cores), Nvidia Tesla P100
e Multi-Core node: 2x Intel Xeon E5-2695 v4 (2 x 18 cores)

Dense transform of size 512 x 512 x 512 on Piz Daint

4 —e— FFTW MPI with Intel MKL (2 x 18 Threads)
\ - %~ GPU (GPUDirect)
\ ..@- GPU
800 \ =-#-- CPU (12 Threads)
\ —&- CPU (2 x 18 Threads)
\ —#&- CPU (36 Threads)

600

Time [ms]

400

200

r 1 I DRIVING
TRANSITION

SPFFT vs QF

Timings with single thread per rank: Multi-thread scaling with two MPI ranks:
QE vs SpFFT with MPI on Piz Daint Multi-Core Partition , QE vs SpFFT with 2 MPI ranks and OpenMP enabled on Piz Daint Multi-Core Partition
P : SEFFT _—:—_ SEFFF /x/_,_c
{ I QE with gamma . —

SpFFT with gamma /

x

_ . | /
. \ 3
£]
= NN\ 8
¢\.\l\ X e .
% 3 E— -
\+\l\.\ o/ it
T -
+ 2
+\ k. /
| X -
\+E. /
+ 1 ®
11836 72 144 288 576 1 2 4 6 8 10 12 14 16 18
Cores # Threads per process

Size: 243 x 384 x 576
Density: 34%

DRIVING
TRANSITION

SIRIUS library

Anton Kozhevnikov

Motivation for a common plane-wave DFT library

e Many similar full-potential LAPW codes (Exciting, Elk, FLEUR, Wien2k)

e Many similar pseudopotential PW codes (Quantum ESPRESSO, Abinit,
VASP)

e Core DFT functionality is the same (compute total energy, magnetic
moments, stress tensor, forces)

e Alot of common functionality between FP-LAPW and PP-PW methods

Accelerating and writing architecture backends for individual DFT
codes is a waste of resources.

It is much more efficient to focus on the development of a common
DFT functionality and create interfaces to various electronic-structure
codes.

SIRIUS library

SIRIUS is a domain specific library organized as a
collection of C++ classes that abstract away the
different building blocks of PW and LAPW codes.
The library is written in C++11 with MPI, OpenMP
and CUDA/ROCm programming models.
https://github.com/electronic-structure/SIRIUS
https://electronic-structure.github.io/SIRIUS-doc/

git clone --recursive https://github.com/electronic-
structure/SIRIUS.git

mkdir SIRIUS/build

cd SIRIUS/build

cmake —DCMAKE_INSTALL_PREFIX=$HOME/local

make -j install

©) htips:/jgithub comjelectronic-structure/S|
[LICENSE Create LICENS o
[README.md update front
[check_format. ravis
[check_farmat avis hs ag
[@_format
[prerequisite o
[README.m 4
D))

Table of contents

ing GPU su
o Parallel eigensolver
o Python module

Introduction

SIRIUS is a domain specific library for electronic structure ions. It implements pseudopotential I pl (PP-PW)
and full potential linearized augme ted plane wave (FP-LAPW) methods and i sdesgnedfo r GPU acceleration of popular
community c ing, Elk and Quantum ESPRESSO. SIRIUS is written in C++11 with MPI, OpenMP and
CUDA/ROCm prog: odels. SIRIUS is organised as a collection of classes Ih t abstract away the different building
blocks of DFT self- .

The following functionality is currently implemented in SIRIUS:

= [PP-PW) Norm-conserving, ultrasoft and PAW pseudopotentials
4 10P-PW Spinorhit couplinn

DRIVING
TRANSITION

https://github.com/electronic-structure/SIRIUS
https://electronic-structure.github.io/SIRIUS-doc/

Supported functionality

Pseudopotential

e NC/US/PAW pseudopotentials

® Collinear and non-collinear
magnetism

e Hubbard U correction

® Spin-orbit coupling

® Stress tensor

e Atomic forces

e Verification of S-operator matrix

@ [terative Davidson and exact
diagonalization solvers

e Orbital transformation (wave-
function optimisation) method

Features
Full-potential

e L(A)PW+lo method with
arbitrary number of local
orbitals

® Collinear and non-collinear
magnetism with second
variational approach

@ [terative Davidson and
exact diagonalization
solvers

® Spin-orbit coupling

e Atomic forces

Common

e Python frontend

® Symmetrization of lattice-periodic
functions and on-site matrices (using
symmetries from spglib)

® Generation of k-point mesh using spglib

® Run-time control of the eigenvalue
solvers (Lapack / MAGMA / ScalLAPACK /
ELPA)

® Run-time control of the BLAS provider
(CPU BLAS / cuBlas / cuBlasXt)

DRIVING
MAX THE EXASCALE
TRANSITION

SIRIUS library design

QE CP2K i-PI Exciting
DFT_ground_state
Potential Density Band Stress K _point
Field4D Mixer Wave functions
. s . Hamiltonian Forces Beta_projector
Periodic_function P < J
ELPA spglib GSL HDF5 libvdwxc SpFFT
ScaLAPACK LibXC FFTW Magma
LAPACK CUDA ROCm
cuBLAS, cuSolve, cuFFT rocBLAS, rocFFT
B LAS DRIVING
THESsenLs

GPU acceleration of Quantum ESPRESSO

https://github.com/electronic-structure/qg-e-sirius

e Always in sync with main QE repository
e Used in production at CSCS

SCF ground state of Si_{511}Ge Full VC relax of B6Ni8
535 2211

BN QE-native, 6 OMP threads / rank

Bl QE-6.5-dev, 9 OMP threads / rank
500 4 I QE+SIRIUS/6.5.1 (CPU, ScalLAPACK) BN QE+SIRIUS (GPU, cuSolver)
EEE QE+SIRIUS/6.5.1 (GPU, cuSolver) 2000 4
__ 400
@ @ 1500 -
Rl 331330 n 342
c < 1256
) =
2 2
=] o 1000 A
| u 821 795
545 56
500 - I
p 0 -
4 8 16
ul

7
399
32
Number of nodes
DRIVING
TRANSITION

Time t lution {sec.)

https://github.com/electronic-structure/q-e-sirius

PW functionality in CP2K

& cp2k [cp2k ®Watch~ 42 YysStar 217 P Fork 14

<> Code Issues 71 Pull requests 12 Actions Projects 1 Wiki Security 0 Insights

[toestrsease] | ~poKe 71

O v71.0
ﬁ oschuett released this on 28 Dec 2019 - 400 commits to master since this release
-O- 40eef54
Compare v « SIRIUS: Plane Wave module with GPU support, see also this tutorial for Quantum ESPRESSO users.

¢ XTB: Tight-binding module based on doi:10.1021/acs.jctc.7b00118.

¢ RPA/GW /MP2: migrated to DBCSR tensors.

¢ HELIUM: New canonical worm algorithm based on doi:10.1103/PhysRevE.74.036701.
¢ XAS_TDP: X-ray absorption spectra simulations using linear-response TDDFT.

« NEGF: Contact-specific temperature, correct shift and scale factors.

¢ S-ALMO: Major refactoring, added wide variety of options.

¢ CDFT: Cleanup and bug fixing.

* FPGA interface for pw FFT.

* Updated libraries: DBCSR, ELPA, libint, libxc, libxsmm.

¢ The cp2k_shell was integrated into the main binary, simply call cp2k with -s or --shell .

* Development moved from SVN to Git. DRIVING
TRANSITION

LiF with UPF or GTH pseudopotentials

&FORCE_EVAL
METHOD SIRIUS
&PW_DFT
&PARAMETERS
ELECTRONIC_STRUCTURE_METHOD pseudopotential
SMEARING_WIDTH ©.025
USE_SYMMETRY true
GK_CUTOFF 6.0
PW_CUTOFF 20.00
ENERGY_TOL 1e-6
NGRIDK 2 2 2
&END PARAMETERS
&END PW_DFT
&DFT
&XC

&END XC
&END DFT
&END FORCE_EVAL
&SUBSYS
&END SUBSYS
&GLOBAL

&END GLOBAL

&SUBSYS
&CELL
A [bohr] 0.0 3.80402 3.80402
B [bohr] 3.80402 0.0 3.80402
C [bohr] 3.80402 3.80402 0.0
&END CELL
&COORD
SCALED
Li 0.0 0.0 0.0
F 0.5 0.5 0.5
&END COORD
&KIND Li
POTENTIAL UPF "Li.pz-s-kjpaw_psl.0.2.1.UPF.json"
&END KIND
&KIND F
POTENTIAL GTH-LDA-ql1
&END KIND
&END SUBSYS

DRIVING
THE EXASCALE
TRANSITION

CP2K/SIRIUS output example

Charges and magnetic moments

total charge 10.000000

Energy

valence eval sum : -4.33328910

<rho |V"{XC}> : -8.47838592

<rho |E"{XC}> : -7.00804097

<mag|B"{XC}> : 0.00000000

<rho|V"{H}> : 17.65751990

one-electron contribution : -13.47059366 (Ha), -26.94118732 (Ry)
hartree contribution : 8.82875995

xc contribution : -7.00804097

ewald contribution : -20.48430223

PAW contribution : -4.52435252

Total energy : -36.65852943 (Ha), -73.31705886 (Ry)
band gap (eV) : 9.07701505

Efermi : 0.22500000

iteration : 15, RMS 1.424969998675E-09, energy difference : 6.240623875442E-07

converged after 16 SCF iterations!

ENERGY| Total FORCE EVAL (SIRIUS) energy (a.u.): -36.658529429377616

DRIVING
TRANSITION

CP2K input reference

Section PW_DFT

DFT calculation using plane waves basis can be set in this section. The backend called SIRIUS, computes the basic properties of the system, such as
ground state, forces and stresses tensors which can be used by cp2k afterwards. The engine has all these features build-in, support of pseudo-potentials
and full-potentials, spin-orbit coupling, collinear and non collinear magnetism, Hubbard correction, all exchange functionals supported by libxc and
Van der Waals corrections (libvdwxc). [Edit on GitHub]

Section path: CP2K_INPUT / FORCE EVAL / PW DFT

This section cannot be repeated.

Subsections

CONTROL
ITERATIVE_SOLVER
MIXER
PARAMETERS

Full documentation is available here:
https://manual.cp2k.org/cp2k-7 1-branch/CP2K INPUT/FORCE EVAL/PW DFT.html

DRIVING
TRANSITION

https://manual.cp2k.org/cp2k-7_1-branch/CP2K_INPUT/FORCE_EVAL/PW_DFT.html

DRIVING THE EXASCALE TRANSITION

THANKS

Q&A

