
HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

D2.3

Third release of MAX software: Report on the
release of documentation of the performance

optimised parts

Daniel Wortmann, Stefano Baroni, Augustin Degomme, Pietro
Delugas, Stefano de Gironcoli, Andrea Ferretti, Alberto Garcia,

Luigi Genovese, Paolo Giannozzi, Anton Kozhevnikov, and Nicola
Spallanzani

Due date of deliverable 31/01/2022 (month 38)
Actual submission date 15/02/2022
Final version 15/02/2022

Lead beneficiary JUELICH (participant number 4)
Dissemination level PU - Public

http://www.max-centre.eu 1

Ref. Ares(2022)1116652 - 15/02/2022

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

Document information
Project acronym MAX
Project full title Materials Design at the Exascale
Research Action Project type European Centre of Excellence in materials mod-

elling, simulations and design
EC Grant agreement no. 824143
Project starting/end date 01/12/2018 (month 1) / 31/05/2022 (month 42)
Website http://www.max-centre.eu
Deliverable no. D2.3

Authors Daniel Wortmann, Stefano Baroni, Augustin De-
gomme, Pietro Delugas, Stefano de Gironcoli, An-
drea Ferretti, Alberto Garcia, Luigi Genovese, Paolo
Giannozzi, Anton Kozhevnikov, and Nicola Spallan-
zani.

To be cited as Wortmann et al. (2021): Third release of MAX
software: Report on the release of documentation
of the performance optimised parts. Deliverable
D2.3 of the H2020 CoE MAX (final version as
of 15/02/2022). EC grant agreement no: 824143,
JUELICH, Germany.

Disclaimer

This document’s contents are not intended to replace consultation of any applicable legal
sources or the necessary advice of a legal expert, where appropriate. All information in
this document is provided “as is” and no guarantee or warranty is given that the infor-
mation is fit for any particular purpose. The user, therefore, uses the information at its
sole risk and liability. For the avoidance of all doubts, the European Commission has no
liability in respect of this document, which is merely representing the authors’ view.

http://www.max-centre.eu 2

http://www.max-centre.eu
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

Contents

1 Executive Summary 4

2 Introduction 5

3 Performance and portability of MAX flagship codes, libraries, and compo-
nents 5
3.1 FLEUR . 5
3.2 QUANTUM ESPRESSO . 9
3.3 Siesta . 14
3.4 YAMBO . 18
3.5 CP2K . 26
3.6 SIRIUS . 27
3.7 BigDFT . 30

4 Conclusions and ongoing work 32

Acronyms 32

References 33

http://www.max-centre.eu 3

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

1 Executive Summary

Ensuring an efficient use of the upcoming pre- and exascale architectures is one of the key
targets of the MAX project. In this context WP2 focuses on efforts to provide the MAX
flagship codes with performance portable computational kernels. Together with the activ-
ities reported in WP4, a trend analysis clearly shows that forthcoming HPC architecture
(including those relevant for EuroHPC) will be largely heterogeneous and mostly dom-
inated by GPU accelerators. Therefore, we focused our attention on the corresponding
programming frameworks and challenges.

Our work is mostly focused on the specific needs of our codes and methods, and
we employed a variety of software engineering approaches and programming models for
GPU accelerators. Beyond the use of Cuda(-Fortran) to extend the CPU performance
of the codes to NVidia-based GPU hardware, the directive based programming models
OpenACC and OpenMP were employed to exploit the capabilities of hardware across
vendors.

As a main outcome of these activities, all MAX -flagship codes are now able to
exploit the compute power of at least the most widespread (Intel and AMD) CPU and
(NVidia) GPU architectures. These efforts are well documented by corresponding perfor-
mance figures as obtained on some of the most recent supercomputers in Europe. We not
only achieve high single node performance or satisfactory utilisation of a single GPU/n-
ode, but also focused on parallelization efficiency and demonstrate in multiple bench-
marks and use-cases the parallel scaling and efficiency over many nodes. Throughout
this deliverable, these achievements are demonstrated by numerical example and bench-
marks for each MAX flagship code.

Overall, this shows a clear path to the use of a significant share of the computational
resources available on current supercomputers, as well as on future (pre-)exascale ma-
chines. Many kernels and computationally relevant parts of the codes and libraries have
been redesigned to be able to provide performance using portable frameworks. Thereby,
we prepare for future architectures like AMD-based GPUs (as e.g. used in the coming
pre-exascale machine LUMI) or Intel GPUs (expected to be released soon). However,
due to the lack of hard- and software support results are still sparse for these efforts, and
we expect to be able to obtain convincing numbers only after these systems are out into
production and their compilers and low-level software is released.

http://www.max-centre.eu 4

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

2 Introduction

The goal of providing our codes with performance on current and future supercomputer
architectures is the driving force behind the efforts reported here. All codes made signif-
icant progress in the last three years of the MAX project and this report will both include
new developments and an overview of the achievements made.

A key objective of our work is to cover all relevant computing architectures, with
special focus on the EuroHPC program. This amounts to ensure that our codes perform
well on CPU-only machines (homogeneous architectures) as well as on supercomputers
with accelerators (heterogeneous architectures). After the stop of the Intel MIC kind of
processors this currently means machines equipped with GPUs.

The coverage of different computational kernels, different programming paradigms
and different computer systems was a clear target of our work. In this sense, we favoured
the full coverage of the flagship codes with their specific requirements over the consis-
tency of the approaches and their final presentation. The different results presented in
this report therefore give a good impression of both the complexity of the task as well as
of the progress made. The related measures and achievements for all codes are reported
in the following sections.

Together with WP4 we also explored possibilities of a common presentation and met-
ric. However, as most of the efforts reported here are difficult to compare systematically
due to their very different scope, we focused on a more detailed, activity-specific presen-
tation style. With the performance of the flagship codes as our ultimate goal, we report
the achievements mainly in these terms.

The measures reported here are also strongly interconnected to the work reported
in WP1 and WP3, focusing mostly on the software design and the functionality, re-
spectively. For example the separation of libraries as pushed forward in WP1 directly
translates into specific computational kernels relevant for efforts to provide performance
portability. Similarly, some functional advances of WP3 are relevant for the performance
tuning pursued here.

3 Performance and portability of MAX flagship codes, libraries,
and components

After the identification of performance portability challenges, possibilities and bottle-
necks as reported in D2.1, we continued to work on improving the performance of the
flagship codes. In the following we report a summary of the latest achievements on a
code-basis.

3.1 FLEUR

The work on FLEUR in WP2 mainly focused on the implementation of a performance
portable code to evaluate hybrid functionals. This work should be seen in conjuncture
with the efforts of WP1 aiming at a modularization of this code section. All code relevant
for this work is included in the final release MAX -R6.0 of the FLEUR code available at
the FLEUR webpage (https://www.flapw.de).

http://www.max-centre.eu 5

https://www.flapw.de
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

10 20 41 82 205 410
Nodes

10
20
41

Na
Cl

 1
0

k-
Po

in
ts

10 20 41 82 205 410
Nodes

0.0

0.5

1.0

Pa
ra

lle
l E

ffi
cie

nc
y

a) b)

Sparse matmul
inters. wave-prod.

Coulombmat setup
non-local pot.

MT wave-prod
full FLEUR

ideal

Figure 1: Scaling (a) and parallel efficiency (b) of the MPI parallelisation of the hybrid functional
code. The extremely high scalability of most code parts (with the exception of the construction of
the Coulomb matrix, which however is not dominating the total run-time) enables efficient use of
the resources. The slight over-ideal performance increase can be tracked down to a better memory
access for the parallel cases.

Identifaction of relevant kernels for hybrid functionals

Due to the nature of the LAPW method, the evaluation of the exchange interaction as
key part of the hybrid functionals can be split into different computational kernels. Basi-
cally, main steps of the algorithm can be identified as: (i) the evaluation of the Coulomb
kernel in a special mixed product basis (MPB) set, (ii) the projection of wavefunction
products onto the MPB set and (iii) the transformation of the Coulomb matrix into the
LAPW basis using the calculated projections. Out of these three steps the latter two are
the computationally most relevant and thus the majority of effort was focused on these
code parts. The projection operations have to be performed in the interstitial region as
well as in the MT spheres. While the interstitial projects can be mapped on a series of
FFT applied to the wavefunctions and the MPB, the contribution from the atomic MT
spheres has to evaluated in a self-written kernel. The third step is actually a linear al-
gebra operation which can be rewritten as a series of matrix-matrix multiplications and
this refactoring leads to a highly efficient code due to the possibility of using appropriate
third party libraries.

Parallelization over kq-pairs

The usage of supercomputers with their huge number of compute nodes requires a suit-
able distribution of the computational tasks. In the case of the hybrid functional imple-
mentation of FLEUR, this has been achieved on two levels. On the one hand, the different
kq-pairs for which the parallelization is very efficient as the resulting kernels are inde-
pendent and minimal communication is needed, and on the other hand a distribution over
the different eigenstates that does induce more communication and also the need to recal-
culate the same quantities on several nodes in some cases. Both parallelization strategies
combined can be adopted to efficiently parallelise the calculation of the hybrid func-

http://www.max-centre.eu 6

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

tionals over many independent nodes and due to the low communication requirements
this is very portable between different supercomputing architectures. No specific high-
bandwidth network is required, only a synchronous execution and distribution of the data
must be ensured. We would like to stress here, that this parallelism is already available
with rather few k-points, and can thus be exploited even for large setups.

Single Node Performance, GPUs

The key cornerstone to achieve performance portability on various architectures besides a
suitable parallelization strategy over many nodes as outlined above is of course a suitable
approach to single node performance. Our approach was based on:

• Identification of standard math problems which are solved with very high effi-
ciency by vendor/external libraries and to which the performance relevant parts of
our algorithms can be mapped to.

• The construction of custom kernels using both OpenMP and OpenACC program-
ming paradigms to enable performance portable implementations of parts of the
algorithm that can not be treated as standard math problems.

In our case two important computational math-kernels can be identified. On the one hand
the FFT can be used to solve the challenge to calculate the interstitial contribution to the
wavefunction projection onto the auxiliary basis set and matrix-matrix multiplies can be
used to project the Coulomb basis onto the LAPW basis set in the final step of preparing
the non-local potential.

When porting the hybrid functionals to the GPU (see Fig. 2) one can observe signifi-
cant performance improvements in some parts of the code, most notably in the projection
of the wavefunction products in the interstitial regions and the sparse-matrix multiply for
the final projections. Other parts show little performance gain or might even be slightly
faster on a CPU architecture. This can be understood in terms of their lower computa-
tional complexity and their lower degree of exposable parallelism. However, these code
parts are significantly less relevant for the total runtime and it has proven to be much
less efficient to calculate these contributions on the CPU as this would require significant
data transfer between the CPU and GPU memory. Hence, we concluded that even though
some of our kernels are not well suited for GPU computing the aspect of removing data
transfer is more important for performance. At the same time this observation might also
be used to adjust the distribution of the computations and the data in other systems to
increase performance portability.

Single kq-pair

While we demonstrated excellent scalability for many nodes and good performance on
a single GPU in the previous sections, the applicability of the code ultimately is deter-
mined by the possibility to calculate a single kq-pair efficiently on a nodes with more
than a single GPU as such a computational setup seems to be the currently dominating
architecture. As we have demonstrated, the additional scaling on many nodes using the
parallelism over the kq-points is then a straight forward extension. Hence, we studied the
scalability of the code using up to four GPU per node and up to 16 total GPU for this
problem. As seen from Fig. 3 we can very efficiently utilises such an architecture.

http://www.max-centre.eu 7

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

EP
YC

 7
74

2
NV

ID
IA

 V
10

0
NV

ID
IA

 A
10

0

0

10

20

30

40

50

60

70

80

Ru
nt

im
e

[s
]

 1.8x

KAlCl

EP
YC

 7
74

2
NV

ID
IA

 V
10

0
NV

ID
IA

 A
10

0
0

250

500

750

1000

1250

1500

1750

 1.75x
 2.1x

GaTeCl

EP
YC

 7
74

2
NV

ID
IA

 V
10

0
NV

ID
IA

 A
10

0

0

500

1000

1500

2000

2500

3000

3500

 2.6x
1.5x

NaKCla) b) c)

Sparse matmul
Coulombmat setup

MT wave-prod
interst. wave-prod

Figure 2: Comparison of the FLEUR runtime of the non-local potential calculation of three test
systems on three different architectures. A 24 atom KAlCl, the 44 atom GeTeCl and the 64 atom
NaKCl setup calculated on three systems: On an AMD EPYC 7742 CPU, an NVIDIA V100 and
an NVIDIA A100 card.

1 2 4 8 16 32 64 128 256
Nodes

1
2
4
8

16
32
64

128
256

Fe
O

99
 A

to
m

s
Sp

ee
du

p

1 2 4 8 16 32 64 128 256
Nodes

0.0

0.5

1.0

Pa
ra

lle
l E

ffi
cie

nc
y

1 2 4 8 16 32 64
GPUs

1
2
4
8

16
32
64

Al
Ga

As
 1

20
 A

to
m

s
Sp

ee
du

p

1 2 4 8 16 32 64
GPUs

0.0

0.5

1.0

Pa
ra

lle
l E

ffi
cie

nc
y

a) b)

c) d)

Sparse matmul
inters. wave-prod.

Coulombmat setup
non-local pot.

MT wave-prod
full FLEUR

ideal

Figure 3: Scaling behaviour for a single k-point on the JURECA-DC GPU supercomputer fea-
turing 4 A100 GPU cards per node. In the left plot the speedup on a double logarithmic scale is
shown, while the right columns features the corresponding parallel efficiency.

http://www.max-centre.eu 8

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

Figure 4: Improved scalability in pw.x. Field test with the CNTPOR benchmark (see D4.5 [3])
run on Marconi-A3@CINECA (Intel Skylake 48 cores per node). The new RMM-DIIS solver
trades most of the computation time spent in poorly scaling large dense matrices’ diagonalization
for more computation time spent in the efficiently parallelized kernels, whose workload is either
distributed in the R&G MPI group ranks, or offloaded into the accelerator. The dashed reference
line represents the speedup expected at full parallel efficiency.

Concluding, we can claim that the hybrid functional implementation in FLEUR can
demonstrate very high performance on CPU as well as GPU architectures with a scala-
bility that easily extends into the high PetaFlop range.

3.2 QUANTUM ESPRESSO

As shown in other reports [1, 2, 3, 4], QUANTUM ESPRESSO has reached a good per-
formance in many traditional homogeneous CPU-based machines as well as on hetero-
geneous architectures based on CPUs + NVIDIA GPGPUs.

Figures 5 and 6 make evident the differences in the parallelization strategies used on
different architectures. For homogeneous systems most of the performance comes from
the computation distribution among the MPI ranks. The main work-load division is done
among the R&G group ranks, with the distribution of the plane-wave coefficients and of
the scalar FFTs. At this level we also use openMP multithreading, that is used inside the
FFT kernel and to parallelize the loops over the plane-wave coefficients. On top of this
fundamental level, the MPI parallelism exploits the band group to distribute the work on
wave functions; and the pool group to distribute the work on the Hamiltonian blocks.

In heterogeneous systems most of the parallelization is done among the accelera-
tors’ threads instead. The loops on plane wave-coefficients and the FFT kernels are all
offloaded within the accelerator and the the FFTXlib workflow has been specifically op-
timized for the most efficient usage of the accelerators (see FFTXlib paragraph below).
The MPI R&G parallelism has the function of distributing the data structure, so as to
avoid memory issues. The heterogeneous implementation is apparently more efficient
as it yields significantly shorter times-to-solution; and a much lower cost in terms of
node-hours expended by the calculations.

The MPI scalability in the heterogeneous architectures is obtained mostly by exploit-
ing the auxiliary levels of parallelism (bands groups and pools). The pool parallelization

http://www.max-centre.eu 9

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

Figure 5: Computational cost for the CNTPOR benchmark (see https://gitlab.
com/max-centre/benchmarks/-/tree/master/Quantum_Espresso/PW/
CNT10POR8) in different platforms: (circle) heterogeneous nodes with Power9 CPU (32 cores)
and 4 NVidia V100 GPUs; (squares) homogeneous nodes with Intel Knights Landing CPU (64
cores) (see [1, 2] for more details).

Figure 6: Computational cost for ZrO2 benchmark case with cp.x (see https:
//gitlab.com/max-centre/benchmarks/-/tree/master/Quantum_
Espresso/CP/ZrO2/supercell_11layer) in different platforms (see [3] for more
details). The different behavior for the two curves reflects the different choice in distributing the
calculation.

http://www.max-centre.eu 10

https://gitlab.com/max-centre/benchmarks/-/tree/master/Quantum_Espresso/PW/CNT10POR8
https://gitlab.com/max-centre/benchmarks/-/tree/master/Quantum_Espresso/PW/CNT10POR8
https://gitlab.com/max-centre/benchmarks/-/tree/master/Quantum_Espresso/PW/CNT10POR8
https://gitlab.com/max-centre/benchmarks/-/tree/master/Quantum_Espresso/CP/ZrO2/supercell_11layer
https://gitlab.com/max-centre/benchmarks/-/tree/master/Quantum_Espresso/CP/ZrO2/supercell_11layer
https://gitlab.com/max-centre/benchmarks/-/tree/master/Quantum_Espresso/CP/ZrO2/supercell_11layer
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

Figure 7: Average time per iteration (circles) and speedup (triangles) for the GrCoIr benchmark
run on an A100 cluster. Each node is provided with 8 A100 NVidia Cards. The calculation can
be distribute up to 12 pools-groups. After 6 nodes the plot show the speedup of 4 vs. 8 GPUs per
pool.

is already very efficient, as reported in Figure 7. More work is ongoing for the enhance-
ment of the band-group parallelism so to take full advantage of the new iterative solvers
developed in WP3 (see D3.4 report). The new implementation of the RMM-DIIS itera-
tive solver (for more details see the Q. ESPRESSO section of D3.4 [5]) has improved the
scalability of pw.x for large calculations. The improvement shown in Fig. 4 is given by
the significant reduction of the calculation time spent in poorly scaling large dense diago-
nalizations, traded with an increase of the time spent in operations efficiently parallelised
in the R&G MPI group or with the accelerator threads.

For the portability on systems based on CPUs, we mostly rely upon the efficiency
of the software stack (Fortran compiler, FFT and linear algebra libraries), with very
few machine-specific adjustments. In the heterogeneous case, the portability is more
problematic, due to the lack of well-established standards. Ad-hoc programming models
are generally needed for each type of device. It seems, however, that such issue will
soon be mitigated by the foreseen adoption of either openACC or openMP standards
by all main vendors of accelerated hardware. We are thus currently recasting the high-
level code layers of QUANTUM ESPRESSO towards a comprehensive adoption of these
directive-based approaches. The first outcomes of this action are already included into
the latest release (qe-7.0), where most of the offloading implementation in quantum
engines is done with openACC directives. This action will be continued by completing
the openACC porting and by adding the openMP implementation.

In the rest of the section we will first summarise the optimisation actions undertaken
during the MAX phase-2 project. In the last paragraph we will then present the ongoing
actions on the performance portability of QUANTUM ESPRESSO.

http://www.max-centre.eu 11

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

High-level parts of the code. At the higher level, we have been able to maintain the
same organisation and workflow in all the architectures. With the modularization, most
of the compute-intensive parts have been moved to the mathematical libraries. The re-
maining load is constituted by domain specific loops such as those over the plane-wave
coefficients. These loops are distributed among the ranks of the main FFTXlib MPI group
(called R&G) and, within each process, on many threads. In simulations of systems con-
taining a large number of atoms, the nested loops on the atomic indices also become in-
creasingly heavy (e.g. the DFT-D3 dispersion correction term) and it has been necessary
to parallelise them. For accelerated machines these loops are offloaded to accelerators.

FFTXlib. This library performs distributed 3D FFT transforms using basis sets defined
by a spherical cutoff. This is a domain-specific, compute-intensive, and recurrent task in
the QUANTUM ESPRESSO workflows. In reciprocal space, data are distributed among
MPI ranks in sticks along the z direction. In real space data are distributed as slabs and
slab-slices. The 3D transform is computed as a succession of 1D FFTs on stick, or 2D
FFTs on slabs. The 3D data distribution is transposed from the z-stick distribution to the
z-slice via a sequence on MPI all-to-all calls. As the 3D-FFTs are executed on a large
number of wave-functions, the optimisation actions have targeted the enhancement of
the capability to process many wavefunctions concurrently. Different solutions are used
depending on the system. For homogeneous machines with a large number of cores,
the most efficient solution is usually to split the R&G MPI group in many different task
groups, each acting on a different set of wave-functions. In nodes equipped with acceler-
ators, many local 1D or 2D FFTs are performed on the GPU on a batch overlapped with
MPI all-to-all calls for another batch.

LAXlib. Parallel linear algebra represents the other most compute-intensive kernel calls
by QUANTUM ESPRESSO quantum-engines. Optimal performance for this kernel is
obtained by the usage of specialised libraries. The LAXlib library provides wrappers
for initialisation and usage of the main specific libraries. Distributed linear algebra is cur-
rently used for homogeneous machines (Scalapack, ELPA), while GPU specific libraries
(e.g. cublas) are used for GPUs.

The LAXlib library provides also some auxiliary routines for splitting or collecting
the distributed matrices, and for performing some general matrix operations. These have
also been enabled and specifically for operating on matrices allocated on the accelerators.

XClib. These kernels compute the exchange-correlation functional energy contribu-
tion and their derivatives on a 3D data grid. By construction, they are ideal for multi-
thread vectorisation or, in machines with accelerators, for offloading. For what concerns
the latest version of QUANTUM ESPRESSO, the whole library has been accelerated
with openACC. The GPU porting is in particular extremely efficient with up a 10×
(see fig. 8) with respect to the CPU-only version, depending on the grid size.

Ongoing and future work. Most of the work currently ongoing aims at expanding
the performance portability of the code for what concerns the heterogeneous systems
equipped with non-CUDA GPGPUs. As mentioned above part of this effort is the total
conversion of the offloading specification in the higher-level code layers to openACC and

http://www.max-centre.eu 12

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

Figure 8: GPU optimization of the XClib library with a 10× acceleration for the evaluation of
exchange-correlation functionals in distributed real space grids. The new more portable openACC
refactoring maintains the same performance as the first CUDA specific version.

openMP. The usage of these directive-based programming models is also speeding up
the acceleration of other applications of the QUANTUM ESPRESSO suite. In particular,
the openACC porting of the phonon code (ph.x) is currently underway and part of
this work could be directly reused for all the other applications related to the DFPT
formalism. For what concerns the performance portability of the main kernels we are
currently experimenting in LAXlib the wrappers for HIP and ROCm libraries on AMD
GPUs. This work will be finalised in the MAX hackathon that will be held in February
2022. Similar experimentation in LAXlib has been done with the MKL libraries for
GPUs on the Intel devcloud platform.

http://www.max-centre.eu 13

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

0

200

400

600

800

1000

1 2

se
co
nd
s

nodes

cholesky
fwd-transf
solving

bck-transf
build-dm

x 7

x 7

x 14

CPU

CPU+GPU

4x 5x

Global Speedup

Figure 9: Speedup of the diagonalization comparing the CPU only version with the CPU+GPU
implementation. The contributions of the different steps are shown individually highlighting the
different level of GPU porting.

3.3 Siesta

In the past year, the performance enhancements for the SIESTA program have come
mainly from the implementation of new algorithms. Further details are given as part of
the report of the WP3 activities, but we can summarise the enhancements in the following
list:

• Implementation of a basis-contraction scheme to reduce the cardinality of the basis
set without compromising the accuracy of the calculations.

• Refactoring of the linear-scaling sub-system to abstract the underlying matrix op-
eration and take advantage of accelerated back-ends.

Global achievements in MaX-phase2

In SIESTA, the performance-portability is almost completely linked to the use of appro-
priate external solver libraries, as the lion’s share of the CPU time spent by the program is
associated to the solver part. We have considerably extended the performance enhance-
ment possibilities of the code by the completion of the interface to the ELSI library of
solvers, and by taking advantage of the improvements in the ELPA library. The perfor-
mance enhancements come in three significant fronts:

GPU acceleration. The GPU acceleration of the electronic-structure solver based on
diagonalization has been achieved through the use of GPU-enabled versions of the ELPA
library, available in stand-alone form or through the ELSI interface layer implemented in
SIESTA as part of the WP1 activities.

The acceleration improvements are shown in detail in Fig. 9. The Cholesky step
factorises the overlap matrix, a prerequisite for the transformation of the generalised
eigenvalue problem into a standard one (which is the second step). The main phase is the

http://www.max-centre.eu 14

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

Figure 10: Performance improvement from the use of the extra level of parallelisation over k-
points in Siesta using the ELSI interface with the ELPA solver, compared to the previous diago-
nalisation scheme (using both the standard Scalapack solver and the existing ELPA interface in
Siesta). The system is bulk Si with H impurities, with 1040 atoms, 13328 orbitals, and a sampling
of 8 k-points. The multi-k scheme is able to stay closer to ideal scalability for larger numbers of
MPI processes.

solving of this standard problem. The original eigenvalue problem is formally completed
after the back-transformation of the eigenvectors, but the full solution of the electronic-
structure problem still needs the building of the density matrix (DM). The accceleration
of the Cholesky and DM-building steps is being worked on by the ELPA and ELSI de-
velopers. Once these improvements are incorporated in the respective libraries, SIESTA
will immediately benefit.

More levels of parallelization. A feature common in principle to all solvers is that the
SIESTA-ELSI interface is fully parallelised over k-points and spins (support for non-
collinear spin is in the works). This means that these calculations can use two extra
levels of parallelisation (beyond the standard one of parallelisation over orbitals and real-
space grid), see eg Fig. 10. In addition, the PEXSI solver, beyond a reduced scaling (at
most O(N2) for dense systems, and O(N) for quasi-one-dimensional systems) offers two
further levels of parallelisation: over poles, and over trial points for chemical-potential
bracketing. It can be used for large systems with very high numbers of processors.

Use of mixed precision. The ELPA solver can be invoked in single-precision mode,
which can speed up the initial steps of the electronic self-consistent-field (scf) cycle.
In fact, it has been shown that in SIESTA one just needs to perform one or two final
scf steps in double precision to maintain the standard level of precision. This leads to
substantial CPU-time savings (see Fig. 11).

Outlook for further improvements

As mentioned above, the PEXSI solver within ELSI offers several extra levels of par-
allelization: in addition to orbitals and k-points (when relevant), it can parallelize over

http://www.max-centre.eu 15

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

Figure 11: Performance improvement coming from the use of the mixed-precision mode in the
ELPA solver. The system is a H-terminated Si quantum dot, with 1359 atoms and 14691 orbitals,
and convergence of the scf cycle takes 16 steps. CPU time savings of approximately 30% can be
obtained.

poles, and over chemical potential interpolation points. In Fig. 12 (taken from the D4.3
deliverable) we see that this scaling reserve of the PEXSI method means that, by simply
increasing the number of tasks per pole tpp, it can use effectively many more tasks to
provide much lower times-to-solution than the GPU-accelerated diagonalizer. If minimi-
sation of the time-to-solution is the main goal, then the more favourable scaling of the
PEXSI solver is key.

While very relevant for many projects, minimum time-to-solution is not the only pos-
sible goal. Users might want to maximise the return of their supercomputer allocation
by carrying out as many jobs as possible, without regard (within limits) to the time in-
volved. In this case, minimising the total cost (in node*hours) of a calculation is the
relevant objective (this is also related to the optimization of the energy-to-solution). A
good way to look at this balance of objectives is provided by Fig. 13. Here proximity
to the lower-left corner represents the overall “goodness” of the method, but a user can
choose to give an arbitrary relative weight to the two objectives. This plot encodes extra
useful information: the (negative) slope of a line reflects the marginal cost of diminishing
the time-to-solution, which is lower in the PEXSI method (for further details, recall the
discussion in the report for D4.3). A further opportunity for performance enhancement
is then the GPU acceleration of the PEXSI solver.

Further performance improvements and portability to new architectures are in the
pipeline in several of the libraries used by Siesta. ELPA is adding support for AMD and
Intel GPUs, and improving data communication patterns with the accelerators. Libxc is
adding GPU support. DBCSR and Psolver, both part of the MaX effort, are also actively
developed.

http://www.max-centre.eu 16

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

Figure 12: Time to solve the diagonalization problem corresponding to a piece of virus protein
surrounded by water molecules, with approximately 58000 orbitals. Two sets of PEXSI results
(for 20 and 30 poles) are shown, each for different numbers of tasks per pole (tpp) (from left to
right: tpp=8, 16, 32, 64, 128). The thin line shows the ideal scalability behaviour. The calculations
were done on Marconi-100, with 32 CPUs and 4 GPUs per node.

HORIZON2020 European Centre of Excellence

Deliverable D4.3
Second report on code profiling and bottleneck
identification

Fig. 19 presents another view of the benchmark emphasizing cost, and also nicely

showing the level of scaling of the different methods by the deviation from horizontal

lines. If cost is the main concern, then the GPU-accelerated diagonalization wins

(although it might be argued that nodes with GPUs should be charged at a higher rate

than CPU-only nodes; this point is moot on Marconi 100, but could be relevant

elsewhere).

Figure 20: Total cost (per scf step) vs time-to-solution for the virus protein problem, with
approximately 58000 orbitals. CPU and GPU usage details as in Fig. 12 . The PEXSI lines
correspond to different numbers of tasks per pole (from right to left: 8, 16, 32, 64, 128).

Yet another way to look at the issues involved is provided by Fig. 20 . Here proximity

to the lower-left corner represents the overall “goodness” of the method. Also, the

(negative) slope of a line reflects the marginal cost of diminishing the

time-to-solution, which is lower in the PEXSI method, but note that there is a sharp

drop in efficiency when going from tpp=32 to tpp=64. This obviously reflects the fact

that the intra-pole parallelization now needs to perform communications with other

nodes, with higher latency. In this benchmark we did not go beyond tpp=128, but it

would be interesting to try larger systems and see if they can maintain a good scaling

www.max-centre.eu
33

Figure 13: Total cost (per scf step) vs time-to-solution for the virus protein problem, with approx-
imately 58000 orbitals. Details as in previous figure.

http://www.max-centre.eu 17

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

3.4 YAMBO

Following the first GPU-aware release of YAMBO at M12 (v4.5, Nov 2019), and the sec-
ond enhanced release at M24 (v5.0, Nov 2020), here we report about the last year devel-
opments concerning performance portability and GPU-support of YAMBO. The most ma-
ture features described below are already included in YAMBO v5.1 (the most recent ones,
or those still ongoing, being instead located in dedicated development branches, whose
continuous integration assessment can be seen here: http://www.yambo-code.
org/robots/index.php).
Most of the development effort has focused on the following lines:

• Maintenance and consolidation of the GPU-porting of YAMBO based on CUDA-
Fortran (NVIDIA-GPUs), including testing and validation of GPU-aware distribu-
ted linear-algebra libraries relevant for YAMBO kernels;

• Development of software engineering solutions to support multiple GPU-program-
ming models without disrupting the source base (oriented to support NVIDIA,
AMD, and INTEL GPUs).

The key achievements accomplished in the last year are:

• Further optimisation of the memory allocation and distribution, with special focus
on YAMBO GW and BSE runs on GPUs;

• DeviceXlib has been significantly reorganized to support multiple GPU-hardare
and programming models, including CUDA-Fortran, OpenACC, and OpenMP5.
Tests have been extended and demonstrated to work for all environments, notably
including pre-release INTEL GPUs (in direct collaboration with INTEL person-
nel);

• Restructuring of the YAMBO source base to allow for multiple GPU-backend. Be-
sides CUDA-Fortran, the OpenACC programming model has been explicitly adop-
ted and demonstrated for selected kernels (including e.g. the Hartree-Fock self-
energy).

Consolidation of the CUDA-Fortran porting

The CUDA-Fortran porting of YAMBO is proved to be an efficient tool for taking advan-
tage of NVIDIA GPUs. It was therefore appropriate to consolidate it by porting also
kernels and frameworks developed only recently (e.g. MPA, RM_W).

An issue that we faced testing the porting with systems with large memory footprint
was the memory limit of some GPU cards (e.g. NVIDIA V100 with 16GB). In order to
address the problem, at least partially, we started an optimisation of the memory usage
that was in beta phase at M24. Now we can consider it largely tested and validated and
so ready to be added at the next stable release.

As a critical point, the complete solution to the memory issue is related to the usage
of libraries that allow for distributed linear algebra computations on the GPUs. In fact,
when dense linear algebra, as involved in the solution of the Dyson equation for the
screened Coulomb potential, becomes memory critical, at present we can only distribute
the problem on CPUs via the standard Scalapack routines. Distributing on GPUs would

http://www.max-centre.eu 18

http://www.yambo-code.org/robots/index.php
http://www.yambo-code.org/robots/index.php
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of
documentation of the performance optimised parts

therefore be extremely beneficial in these cases. In view of this, we have started making
experience with distributed linear algebra routines from NVIDIA (cuSOLVER_Mg). At
first we focused on the solution of complex linear systems with multiple rhs. Eventually
we were able to build an interface and to have the kernel working on multiple GPUs
within one node. Currently, we are still in the process of evaluating alternative solutions,
including e.g. cuSOLVER_Mp, or SLATE, to address multi-GPU multi-node solutions.

DeviceXlib: Strategy and development

As also discussed in D1.5, DeviceXlib is a domain-specific performance-portability
library developed within the MAX consortium (mostly by the QUANTUM ESPRESSO
and YAMBO teams), with the aim of hiding most of programming-model and vendor-
specific instructions, while exposing abstract operations (memcpy to/from/within the
GPU memory, equipped with allocation/deallocation/memset utilities, linear algebra in-
terfaces, specialized common kernels, ...). The domain-specific nature of the library
stands in the selection of the kernels and operations exposed to the developer.

DeviceXlib has been significantly restructured in order to allow for the use of
multiple GPU-oriented programming models (such as CUDA-Fortran, OpenaCC,
OpenMP5), multiple linear algebra libraries (notably, cuBLAS, RocBLAS, MKL_GPU),
in turn targeting multiple GPU hardware (including NVIDIA, AMD, and INTEL GPUs).

At the moment DeviceXlib have been positively demonstrated (by running the
internal tests) on NVIDIA architectures using multiple compilers and programming mod-
els. The library has also been deployed and run correctly on INTEL GPUs (pre-release
hardware, in direct collaboration with INTEL personnel). Moreover, at the time of writ-
ing, a MAX Hackathon dedicated to AMD hardware (with special focus on the LUMI
EuroHPC machine) is running.

Examples of the software engineering strategies adopted in DeviceXlib to sup-
port the above described programming models, libraries, and hardware are reported be-
low. In particular we have taken advantage of the previous experience done with YAMBO

(see e.g. D2.2) to hide CUDA-specific code, largely employing pre-compiler macros and
Fortran-interfaces to avoid code-duplication.
!
! directive sentinels
!
#if defined __DXL_OPENACC
define DEV_ACC $acc
#endif
#if defined __DXL_CUDAF
define DEV_CUF $cuf
#endif
#if defined __DXL_OPENMP_GPU
define DEV_OMPGPU $omp
#endif
#if defined __DXL_OPENMP && !defined (__DXL_HAVE_DEVICE)
define DEV_OMP $omp
#endif

!
! motif for malloc routines
!
subroutine dev_malloc(array, range1)

[...]
#if defined __DXL_CUDAF

http://www.max-centre.eu 19

http://www.max-centre.eu/sites/default/files/D2.2_Second%20release%20of%20MaX%20software_report%20on%20performance%20achieved.pdf
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of
documentation of the performance optimised parts

if (.not.allocated(array)) allocate(array(d1s:d1e))
!

#elif defined __DXL_OPENACC || defined __DXL_OPENMP_GPU
!
!DEV_ACC enter data create(array(d1s:d1e))
!DEV_OMPGPU target enter data map(alloc: array)
!

#endif

!
! motif for linear algebra wrappers
!
subroutine dev_CGEMM_gpu(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)

[...]
!DEV_ACC data present(A,B,C)
!DEV_ACC host_data use_device(A,B,C)
!DEV_OMPGPU target variant dispatch use_device_ptr(A,B,C)

#if defined __DXL_CUBLAS
call cublasCgemm(transa_,transb_,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)

#elif defined __DXL_ROCBLAS
ierr=rocblas_cgemm(rocblas_handle,transa_,transb_,M,N,K,...)

#elif defined __DXL_MKL_GPU
call CGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)

#endif
!DEV_OMPGPU end target variant dispatch
!DEV_ACC end host_data
!DEV_ACC end data

!
! motif for custom (automatic) functions/kernels
! here the case of a wrapper for the complex conjugation of device data
!

!DEV_CUF kernel do(1)
!DEV_ACC data present(array_inout)
!DEV_ACC parallel loop collapse(1)
!DEV_OMPGPU target map(alloc:array_inout)
!DEV_OMPGPU teams loop collapse(1)
!DEV_OMP parallel do
do i1 = d1s, d1e

array_inout(i1) = &
conjg (array_inout (i1))

enddo
!DEV_ACC end data
!DEV_OMPGPU end target

Then, DeviceXlib exposes a number of APIs corresponding to abstract device-oriented
operations that can be used in scientific codes such as YAMBO and QUANTUM ESPRESSO.
When possible, single interfaces for device/host, kinds, ranks, precisions are provided
(and automatically generated via python scripts when useful). A list of these utilities
include:

! malloc/free
subroutine dev_malloc
subroutine dev_free

function dev_allocated ! logical enquire function
!
! memcpy and memset
subroutine dev_memcpy_h2d
subroutine dev_memcpy_d2h
subroutine dev_memcpy_d2d
subroutine dev_memset
!
! auxiliary functions
subroutine dev_conjg ! complex conjugations
subroutine dev_vec_upd_remap ! v_out(:) = scal * v_in(map(:))

http://www.max-centre.eu 20

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of
documentation of the performance optimised parts

[...]
!
! linear algebra interfaces

function dev_xDOT, dev_xDOTU, dev_xDOTC
subroutine dev_xAXPY
subroutine dev_xGEMV
subroutine dev_xGEMM
[...]

DeviceXlib is equipped with a number of unit tests to allow for continuous in-
tegration and is made available on the MAX Gitlab repository: https://gitlab.
com/max-centre/components/devicexlib.

YAMBO with multiple GPU programming models

The porting strategy of YAMBO sketched in D2.2 has been consolidated in the source-
base, and further developed to allow for openACC support. OpenMP5 support, already
included in DeviceXlib, is also under development. The overall strategy is based on
the following choices:

• In view of the available software stacks for GPU support, at present YAMBO needs
to support multiple programming models in order to address multiple GPU archi-
tectures;

• Data representation in GPU memory is obtained either explicitly (as when using
CUDA-Fortran) or implicitly via host pointers + memory mapping (as with Ope-
nACC or OpenMP5);

• Extensive use of DeviceXlib is made, allowing YAMBO developers to handle
explicitly, though abstractly, data memcpys to/from GPU memory, and to perform
basic operations on such data (including linear algebra kernels).

• When specialised kernels are needed, extensive use of directive loop decoration
is made (protecting directive sentinels via the pre-compiler macros DEV_OMP,
DEV_CUF, DEV_ACC, DEV_OMPGPU, as described above for DeviceXlib).
This already covers the largest part of computational loops in the code.

• When performance critical, explicit implementation of custom kernels could in
principle be added (not used at present).

• As a result, YAMBO has a single source code supporting CPU (with OpenMP par-
allelism) and GPU (via CUDA-Fortran and OpenACC).

Currently, CUDA-Fortran porting is fully developed, OpenACC is partly developed (more
and more kernels are being ported), while porting via OpenMP5 is planned in the short
term (being already present in DeviceXlib). Practical examples of the above strategy
are shown below.
!
! macros to be included
!
#ifdef _CUDAF
define DEV_SUB(x) x##_gpu
define DEV_VAR(x) x##_d)
define DEV_ATTR , device

http://www.max-centre.eu 21

https://gitlab.com/max-centre/components/devicexlib
https://gitlab.com/max-centre/components/devicexlib
http://www.max-centre.eu/sites/default/files/D2.2_Second%20release%20of%20MaX%20software_report%20on%20performance%20achieved.pdf
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

#elif defined _OPENACC || defined _OPENMP5
define DEV_SUB(x) x##_gpu
define DEV_VAR(x) x
define DEV_ATTR

#else
define DEV_SUB(x) x
define DEV_VAR(x) x
define DEV_ATTR
#endif

!
! From routine src/wf_and_fft/scatter_Bamp.F
!
subroutine DEV_SUB(scatter_Bamp)(isc)
[...]
complex(SP), pointer DEV_ATTR :: WF_symm_i_p(:,:), WF_symm_o_p(:,:)
complex(SP), pointer DEV_ATTR :: rhotw_p(:)
complex(DP), pointer DEV_ATTR :: rho_tw_rs_p(:)
logical :: have_cuda_loc
!
! define pointers to enable CUF kernels
! when compiling using CUDA-Fortran
!
WF_symm_i_p => DEV_VAR(isc%WF_symm_i)
WF_symm_o_p => DEV_VAR(isc%WF_symm_o)
rho_tw_rs_p => DEV_VAR(isc%rho_tw_rs)
rhotw_p => DEV_VAR(isc%rhotw)
[...]

!DEV_ACC data present(rho_tw_rs_p,WF_symm_i_p,WF_symm_o_p)
!DEV_ACC parallel loop async
!DEV_CUF kernel do(1) <<<*,*>>>
!DEV_OMP parallel default(shared), private(ir)
!DEV_OMP do
do ir = 1, fft_size
rho_tw_rs_p(ir) = cmplx(conjg(WF_symm_i_p(ir,1))*WF_symm_o_p(ir,1),kind=DP)

enddo
!DEV_OMP end parallel
!DEV_ACC end data
[...]

The above approach, jointly with the use of DeviceXlib, allowed us to implement
the OpenACC porting of the HF kernel by leaving the high-lever sources mostly un-
changed with respect to the CUDA-Fortran porting. A snippet from the XCo_Hartree_Fock.F
source file is provided below:

do jb=Sx_lower_band,Sx_upper_band
(...)
call DEV_SUB(scatter_Bamp)(isc)
(...)
if (isc%is(1)/=iscp%is(1)) then

call DEV_SUB(scatter_Bamp)(iscp)
else

! iscp%rhotw = isc%rhotw
call dev_memcpy_d2d(DEV_VAR(iscp%rhotw),DEV_VAR(isc%rhotw))

endif
!
DP_Sx_l=DEV_SUB(Vstar_dot_VV)(isc%ngrho,DEV_VAR(iscp%rhotw),&

DEV_VAR(isc%rhotw),DEV_VAR(isc%gamp)(:,1))
DP_Sx=DP_Sx + DP_Sx_l * const
!

enddo

http://www.max-centre.eu 22

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

Figure 14: YAMBO parallel scaling and performance taken from runs of the Rutile-H benchmark.
Data from Marconi-100 at CINECA (IBM-P9 + 4*V100, left) and Juwels-Booster at JSC (AMD-
EPYC-Rome + 4*A100, right). All calculations run with YAMBO v5.1(dev) using 8 threads per
MPI task.

MPI Nodes Wall time Dipoles X0 X Self energy Other

Marconi 100
20 5 1763.0 600.0000 938.0000 2.2058 195.7894 27.0048
40 10 1019.0 314.6036 552.2515 2.4054 124.6729 25.0666
60 15 721.0 217.8861 387.6636 7.2033 78.5183 29.7287
80 20 542.0 165.0172 301.9688 2.3379 51.5035 21.1726

100 25 446.0 137.5690 235.7383 2.3202 45.1188 25.2537
120 30 405.0 123.2480 217.8780 2.3611 34.0016 27.5113
140 35 354.0 106.4343 182.5872 2.3460 33.1455 29.4870
160 40 316.0 95.4596 159.8472 2.4356 28.4254 29.8322
200 50 267.0 81.1682 137.8192 2.3841 22.6336 22.9949

Juwels Booster
20 5 1361.0 397.1855 777.0000 3.5280 159.3552 23.9313
40 10 774.0 213.2750 455.4877 3.7270 81.1500 20.3603
60 15 556.0 152.4184 324.4857 3.7884 56.4944 18.8131
80 20 441.0 121.5582 254.0378 3.6955 42.6529 19.0556

100 25 358.0 103.3167 197.9958 3.7542 34.7814 18.1519
120 30 328.0 91.2371 183.7931 3.8982 29.8318 19.2398
140 35 285.0 81.9063 153.4539 3.7370 27.4232 18.4796
160 40 258.0 76.2563 133.0946 4.8090 24.2360 19.6041
180 45 246.0 71.4286 130.2942 3.6830 22.0923 18.5019
200 50 227.0 67.0105 116.2699 3.7086 20.3843 19.6267

Table 1: YAMBO parallel scaling taken from runs of the Rutile-H benchmark. Data from Marconi-
100 at CINECA (IBM-P9 + 4*V100) and Juwels-Booster at JSC (AMD-EPYC-Rome + 4*A100).
All calculations run with YAMBO v5.1(dev) using 8 threads per MPI task.

http://www.max-centre.eu 23

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

Figure 15: Rutile-H benchmark: node and energy costs of YAMBO v5.1(dev) runs performed on
Marconi-100 at CINECA (IBM-P9 + 4*V100, left) and Juwels-Booster at JSC (AMD-EPYC-
Rome + 4*A100, right).

Performance achieved

Following the work done in previous deliverable D2.2 [1], below we report the perfor-
mance results obtained on Marconi-100 (M100) at CINECA, and we add the results ob-
tained on the Juwels Booster module (Booster) at JSC, as a comparison. M100 deploys
IBM Power9 nodes equipped with 4 NVIDIA V100 cards,1 while Booster is built with
AMD EPYC Rome 7402 nodes equipped with 4 NVIDIA A100 cards.2 In this regard,
the comparison of the results obtained will be mainly focused on the different generation
of NVIDIA GPU mounted on the two machines.

In deliverable D4.5 [3] on profile and bottleneck identification we compared three
versions of YAMBO (a pre-release of v4.5, v5.0, and a pre-release of v5.1) across M100
and Marconi-Skylake, using the Rutile-H use case of the MAX benchmark set (defined
in D4.2 [6]), a defected 2×2×3 TiO2 rutile bulk supercell with an interstitial H impurity
(72+1 atoms). Working on the same system, here we also add a comparison with the
Booster machine, equipped with state-of-the-art NVIDIA cards.

Considering Fig. 14 and at the related Tab. 1, the performance improvement of runs
on the newer NVIDIA A100 GPUs is quite evident. By comparing the data, the average
speedup of about 1.26. Such performance enhancement is probably somehow limited
by the nature of the system where the calculation of dipoles is a relevant part of the
run. A deeper investigation in this kernel of the code is on schedule. The left panel of
Fig. 15 reports the comparison between the two clusters in terms of the "node hours" cost
measure. Then, the right panel shows the node*hour graph converted to energy cost by
multiplying with the average power/node taken from the Top500 listing. The comparison
shows that the use of newer generation GPUs results in a lower computational cost, across
all calculations. In terms of energy cost we have a net advantage for a low level of
parallelization, while for high number of nodes the the system studied probably becomes
too small to support a high energy efficiency.

We started this Section by reporting the results of the Rutile-H benchmark for conti-
nuity with the previous deliverables. However, given above the considerations, we have
also decided to study a new benchmark system (graphene/Co interface), that we plan to

1Marconi-100, https://www.top500.org/system/179845/
2Juwels Booster module https://www.top500.org/system/179894/

http://www.max-centre.eu 24

http://www.max-centre.eu/sites/default/files/D2.2_Second%20release%20of%20MaX%20software_report%20on%20performance%20achieved.pdf
http://www.max-centre.eu/sites/default/files/D4.5_Final%20report%20on%20codes%20profiling%20and%20bottlenck%20identification.pdf
http://www.max-centre.eu/project-repository
https://www.top500.org/system/179845/
https://www.top500.org/system/179894/
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

Figure 16: YAMBO parallel scaling and performance taken from runs of the GrCo benchmark.
Data from Marconi-100 at CINECA (IBM-P9 + 4*V100, left) and Juwels-Booster at JSC (AMD-
EPYC-Rome + 4*A100, right). All calculations run with YAMBO v5.1(dev) using 8 threads per
MPI task.

Figure 17: GrCo benchmark: node and energy costs of YAMBO v5.1(dev) runs performed on
Marconi-100 at CINECA (IBM-P9 + 4*V100, left) and Juwels-Booster at JSC (AMD-EPYC-
Rome + 4*A100, right).

add to reference cases for the YAMBO code. This graphene/Co interface (GrCo) is mod-
elled as a graphene sheet adsorbed on a Co slab with 4 Co layers (2 Carbon atoms on top
of a 4 layer Co slab terminated by an H atom). The simulations include a vacuum layer
as large as the thickness of the slab, as customary for GW calculations on slabs. The
structural optimisation was performed at the PBE-DFT level, followed by the band struc-
ture calculations including a large number of empty states, to be used as a starting point
for the GW calculations. Figures 16 and Tab. 2 report the timing of the GrCo benchmark
run on both the M100 and Booster clusters. The comparison of the wall-time shows and
average speedup of 2.11 when using the newer A100 GPUs. This result is in agreement
with data obtained by other software in the same scientific field.3

3https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

http://www.max-centre.eu 25

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

MPI Nodes Wall time Dipoles X0 X Self energy Other

Marconi 100
12 3 1470.0 45.5295 1384.0000 1.5958 14.2920 24.5827
36 9 604.0 26.5707 547.8331 1.7455 7.9777 19.8730
72 18 343.0 12.8779 311.0127 1.7116 5.4037 11.9941

108 27 250.0 12.8607 216.0491 1.7434 3.4225 15.9243
144 36 203.0 11.8446 171.8870 1.7350 2.5992 14.9342
180 45 187.0 13.6641 150.2193 1.7749 2.4651 18.8766

Juwels Booster
12 3 798.0 35.8163 737.0000 2.3405 9.0889 13.7543
36 9 256.0 17.9305 220.4115 2.3435 4.6583 10.6562
72 18 154.0 14.3519 123.9023 1.5550 3.3195 10.8713

108 27 114.0 12.4867 85.5235 2.1499 1.8856 11.9543
144 36 101.0 14.2410 68.8225 2.2279 1.7019 14.0067
180 45 91.0 15.1135 59.3384 1.6792 1.5501 13.3188

Table 2: YAMBO parallel scaling taken from runs of the GrCo benchmark. Data from Marconi-
100 at CINECA (IBM-P9 + 4*V100) and Juwels-Booster at JSC (AMD-EPYC-Rome + 4*A100).
All calculations run with YAMBO v5.1(dev) using 8 threads per MPI task.

3.5 CP2K

The performance portability of CP2K comes solely from the libraries on top of which
CP2K is built. One of the key and performance critical libraries for CP2K is DBCSR.
DBCSR performs distributed sparse matrix-matrix multiplications and is used in linear-
scaling O(N) method. The work on DBCSR was finished at M18 of the project and
reported in the previous deliverable. Here the short overview is summarised.

DBCSR performs MPI data exchange and small local matrix-matrix multiplications.
The sizes of the matrices are really small – each of the [m,n,k] indices is in the range
∼ 1 − 100 as defined by the atomic Gaussian basis. To optimise such small matrix-
matrix multiplications DBCSR had to perform an exhaustive search of the optimal kernel
parameters for each of the [m,n,k] combinations. This was inconvenient for two reasons:
1) for each flavour of the basis user had to generate the optimal GPU kernels for DBCSR
before running CP2K 2) this couldn’t have been done during the run-time and the process
was slow because of the large number of combinations of internal GPU kernel parame-
ters. With the introduction of the new ML-based framework developed during the MaX
project, the optimal kernel parameters are found automatically for each new combination
of [m,n,k], then the GPU kernels for NVIDIA or AMD are generated and compiled dur-
ing the run time. This is called just-in-time compilation (JIT) and is available for both
NVIDA and AMD GPU cards. The full documentation for users and developers is avail-
able at https://cp2k.github.io/dbcsr/develop/ and the predictive mod-
elling framework is described at https://cp2k.github.io/dbcsr/develop/
page/3-developer-guide/3-programming/2-accelerator-backend/
2-libsmm_acc/4-predict.html.

http://www.max-centre.eu 26

https://cp2k.github.io/dbcsr/develop/
https://cp2k.github.io/dbcsr/develop/page/3-developer-guide/3-programming/2-accelerator-backend/2-libsmm_acc/4-predict.html
https://cp2k.github.io/dbcsr/develop/page/3-developer-guide/3-programming/2-accelerator-backend/2-libsmm_acc/4-predict.html
https://cp2k.github.io/dbcsr/develop/page/3-developer-guide/3-programming/2-accelerator-backend/2-libsmm_acc/4-predict.html
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of
documentation of the performance optimised parts

3.6 SIRIUS

The SIRIUS library was developed with the CUDA backend from day zero. When AMD
released the ROCm development toolkit, it was straightforward to generalise the SIRIUS
code to work with both the CUDA and ROCm frameworks. The following minimal
changes were introduced:

• Wrap API prefix, stream and error handlers
#if defined(SIRIUS_CUDA) || defined(SIRIUS_ROCM)
#define CALL_DEVICE_API(func__, args__) \
{ \

if (acc::num_devices()) { \
acc_error_t error; \
error = GPU_PREFIX(func__) args__; \
if (error != GPU_PREFIX(Success)) { \

char nm[1024]; \
gethostname(nm, 1024); \
std::printf("hostname: %s\n", nm); \
std::printf("Error in %s at line %i of file %s: %s\n",\

#func__, __LINE__, __FILE__, \
GPU_PREFIX(GetErrorString)(error));\

stack_backtrace(); \
} \

} \
}
#else
#define CALL_DEVICE_API(func__, args__)
#endif

#if defined(SIRIUS_CUDA)
#define GPU_PREFIX(x) cuda##x
#elif defined(SIRIUS_ROCM)
#define GPU_PREFIX(x) hip##x
#endif

#if defined(SIRIUS_CUDA)
using acc_stream_t = cudaStream_t;
#elif defined(SIRIUS_ROCM)
using acc_stream_t = hipStream_t;
#else
using acc_stream_t = void*;
#endif

#if defined(SIRIUS_CUDA)
using acc_error_t = cudaError_t;
#elif defined(SIRIUS_ROCM)
using acc_error_t = hipError_t;
#else
using acc_error_t = void;
#endif

• Wrap complex numbers arithmetic
#if defined(SIRIUS_CUDA)
using acc_complex_float_t = cuFloatComplex;
using acc_complex_double_t = cuDoubleComplex;
#define make_accDoubleComplex make_cuDoubleComplex
#define make_accFloatComplex make_cuFloatComplex
#define accCadd cuCadd
#define accCsub cuCsub
...
#define ACC_DYNAMIC_SHARED(type, var) extern __shared__ type var[];

http://www.max-centre.eu 27

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of
documentation of the performance optimised parts

#elif defined(SIRIUS_ROCM)
using acc_complex_float_t = hipFloatComplex;
using acc_complex_double_t = hipDoubleComplex;
#define make_accDoubleComplex make_hipDoubleComplex
#define make_accFloatComplex make_hipFloatComplex
#define accCadd hipCadd
#define accCsub hipCsub
...
#define ACC_DYNAMIC_SHARED(type, var) HIP_DYNAMIC_SHARED(type, var)
#endif

• Wrap API calls
/// Get current device ID.
inline int get_device_id()
{

int id{0};
CALL_DEVICE_API(GetDevice, (&id));
return id;

}

• Wrap kernel calls
/*
* CUDA runtime calls and definitions

*/
#ifdef SIRIUS_CUDA
#define accLaunchKernel(kernelName, nb, nt, memperblock, streamId, ...) \
do { \

kernelName<<<nb, nt, memperblock, streamId>>>(__VA_ARGS__); \
} while (0)

#define hipThreadIdx_x threadIdx.x
#define hipThreadIdx_y threadIdx.y
#define hipThreadIdx_z threadIdx.z

#define hipBlockIdx_x blockIdx.x
#define hipBlockIdx_y blockIdx.y
#define hipBlockIdx_z blockIdx.z

#define hipBlockDim_x blockDim.x
#define hipBlockDim_y blockDim.y
#define hipBlockDim_z blockDim.z

#define hipGridDim_x gridDim.x
#define hipGridDim_y gridDim.y
#define hipGridDim_z gridDim.z
#endif

/*
* ROCM runtime calls and definitions

*/
#ifdef SIRIUS_ROCM
#define accLaunchKernel(...) \

do { \
hipLaunchKernelGGL(__VA_ARGS__); \

} while (0)

#endif

• Write GPU kernels in a generic way
template <>
__global__ void
add_pw_ekin_gpu_kernel<double>(int num_gvec__, double alpha__,

http://www.max-centre.eu 28

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

double const* pw_ekin__,
acc_complex_double_t const* phi__,
acc_complex_double_t const* vphi__,
acc_complex_double_t* hphi__)

{
int ig = blockIdx.x * blockDim.x + threadIdx.x;
if (ig < num_gvec__) {

acc_complex_double_t z1 =
accCadd(vphi__[ig],
make_accDoubleComplex(alpha__ * pw_ekin__[ig] * phi__[ig].x,

alpha__ * pw_ekin__[ig] * phi__[ig].y));
hphi__[ig] = accCadd(hphi__[ig], z1);

}
}

extern "C" void
add_pw_ekin_gpu_double(int num_gvec__, double alpha__,

double const* pw_ekin__,
acc_complex_double_t const* phi__,
acc_complex_double_t const* vphi__,
acc_complex_double_t* hphi__)

{
dim3 grid_t(64);
dim3 grid_b(num_blocks(num_gvec__, grid_t.x));

accLaunchKernel((add_pw_ekin_gpu_kernel<double>), dim3(grid_b),
dim3(grid_t), 0, 0, num_gvec__, alpha__, pw_ekin__,
phi__, vphi__, hphi__);

}

• Wrap linear algebra calls

The same type of modifications were also introduced in the SpFFT and SPLA libraries
and the MAGMA4 team ported MAGMA to ROCm using a similar strategy. With this
software stack it is now possible to run SIRIUS on both NVIDIA and AMD hardware.
The result of the first benchmark of QUANTUM ESPRESSO on AMD GPU cards is
present on the Fig. 18.

4MAGMA is a library that provides LAPACK functionality on GPUs

http://www.max-centre.eu 29

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

Figure 18: Benchmark of the GPU-accelerated QUANTUM ESPRESSO using NVIDIA P100 and
AMD Mi100 cards. Benchmark runs the SCF ground state of Si63Ge and computes stress tensor
and atomic forces. Blue: QE/SIRIUS runs on 1 and 4 nodes of Piz Daint. Green: QE/SIRIUS run
on 1 node of AMD EPYC 7662 and Mi100 GPU card (single Mi100 node was the only resource
available to us). Orange: cuda-Fortran enabled QE-6.6a2 compiled with PGI. The "out of GPU
memory" error did not allow to run it on a single node. Please note that AMD Mi200 cards are
not yet available for the public access and benchmarking.

3.7 BigDFT

The WP2 activities associated to performance portability related to BigDFT are in tight
connection with the actions performed in the framework of WP4, in particular with re-
spect to the use of advanced programming models. The main reason for this overlap is
related to the architecture of the libconv library (designed in the context of WP1).

The auto-tuned libconv convolution library has been proven to be a useful and
powerful addition to BigDFT. Its integration is challenging, as a lot of convolutions
calls are already scattered in BigDFT, and the new convolution APIs introduced with
libconv require changes in several places at the computation-kernel level. Memory
requirements for vectorization are also important, as properly aligned memory must be
used. This can be done within the futile1 library, but must be handled with care.

In order to minimise the impact on existing code, and to provide libconv as an op-
tion instead of a complete replacement of existing convolutions, a new interface library
is being developed. Liborb (library for orbital manipulations) aims at handling in a
single place all the orbital-related tasks. The aim of this library is to provide an API for
the flexible definition of self-consistent field (SCF) operations at a high level. The goal
is to separate the implementation of the orbitals representation from the SCF algorithms
using it, so that the user is kept isolated from the basis sets employed for the discretisa-
tion. Liborb handles the specification of the orbital, which can be discretised in wavelet
bases, Gaussian bases, or real space.

The centralisation of these representations simplifies the wrapping of all calls to
libconv, which can be used mostly for the wavelet basis. Liborb indeed handles
the scalar products between sets of orbitals, the communication of these orbitals between
processes, the application of Hamiltonian operators on orbitals, and I/O for these bases.
Conversion between all basis representations is also possible within the library, and is

http://www.max-centre.eu 30

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

OpenMP Threads 1 48
Ref (Fortran, no OpenMP) + GCC autovec 52961 52961
libconv – no vectorization + GCC autovec 17525 549
libconv – NEON vectorization + GCC autovec 15930 511
libconv – SVE vectorization + GCC no autovec 13604 455
libconv – SVE vectorization + GCC autovec 13689 456

Figure 19: Preliminary timings for 300 full applications of a « MagicFilter » convolution, double
precision with sizes 124*132*130 on an A64FX processor. Compiler used is GCC10. Ref is just
for results checkings and not the current BigDFT implementation. We can see that the generation
of SVE instructions directly from the libconv library using BOAST outperforms the auto vector-
ized versions of the same convolutions and the NEON version, while the compiler cannot further
optimize the resulting convolutions through vectorization. All tested libconv-generated convolu-
tions are using unrolling/dimensions reordering and other optimizations automatically and gener-
ated in C, with wrappers created for C and Fortran interfacing. OpenMP scaling over 48 cores is
30 for each variant, showing that the scaling should not be affected by the extended use of SVE
instructions. Flags for neon auto vectorization were -O3 -ftree-vectorize -march=armv8-a+sve
-msve-vector-bits=512.

useful in most of the current developments of BigDFT.
The wrapping of all libconv operations in a single point will make the performance

evaluation simpler, in turn allowing for an easy selection of the most efficient flavour of
convolutions. Libconv itself has also been improved, with the support of SVE instruc-
tions within the BOAST framework, to generate automatically SVE-vectorised convolu-
tions, making the best possible use of modern ARM processors, such as the A64FX used
in the Fugaku supercomputer.

In the last year, extensive comparison of the performance of BigDFT on ARM archi-
tectures has been performed. We refer the reader to the description provided in the WP4
document D4.5 [3] about the various benchmarks performed.

http://www.max-centre.eu 31

http://www.max-centre.eu/sites/default/files/D4.5_Final%20report%20on%20codes%20profiling%20and%20bottlenck%20identification.pdf
http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

4 Conclusions and ongoing work

Computationally relevant kernels of all MAX flagship codes have been ported to a hy-
brid (heterogeneous) computing paradigm utilising both CPUs and GPUs. Depending
on the availability of hardware for testing and performance verification, as well as on
the required software stack for the applications, different computing architectures are
supported.

• Besides the dominating x86 CPU architecture, we have also explored ARM based
CPUs.

• All codes work on the currently dominating GPUs from NVIDIA, and can uti-
lize these GPUs efficiently. The performance achieved using this architecture is
demonstrated in this and previous reports, and these developments generally are
incorporated in the code versions publicly released and used for cutting edge sci-
ence.

• AMD GPUs (and also INTEL GPUs) have also been addressed, with results at dif-
ferent levels of maturity. While in some cases readiness has already been achieved,
in other cases the work is still ongoing. This is mostly a direct consequence of the
limitations in the available compiler support and hardware accessibility (though
notably we were able to run some of our software on pre-release INTEL hard-
ware).

Summarising, the MAX flagship codes achieved and managed to demonstrate per-
formance portability to a wide range of state-of-the-art HPC computational architectures,
notably including those relevant for the EuroHPC program. Overall, such progress in
performance and scalability paves the way for a successful application of our codes on
the upcoming (pre-) exascale machines.

Acronyms

CPU Central Processing Unit. 9–11

DFPT Density Functional Perturbation Theory. 13

GPGPU General Purpose GPU. 9, 12

http://www.max-centre.eu 32

http://www.max-centre.eu

HORIZON2020 European Centre of Excellence

Deliverable D2.3
Third release of MAX software: Report on the release of doc-
umentation of the performance optimised parts

References

[1] Wortmann, D. et al. Second release of max software: Report on performance
achieved.Deliverable D2.2 of the H2020 CoE MaX (final version as of 30/11/2020).
EC grant agreement no: 824143, JUELICH, Germany. (2020).

[2] Affinito, F. et al. Second report on codeprofiling and bottleneck identification. de-
liverable d4.3 of the h2020 project max(final version as of 31/05/2020). ec grant
agreement no:824143, cineca, casalecchio di reno (bo), italy. (2020).

[3] Affinito, F. et al. Final report on code profiling and bottleneck identification. de-
liverable d4.5 of the h2020 project max (final version as of 30/11/2021). ec grant
agreement no: 824143, cineca, casalecchio di reno (bo), italy. (2021).

[4] Cesarini, D. et al. Final report on co-design activities.

[5] Genovese, L. et al. Third release of MAX software: report on the evolution actions
taken in each of the codes. Deliverable D3.4 of the H2020 CoEMAX (2022).

[6] Cavazzoni, C. et al. First report on code profiling and bottleneck identification, struc-
tured plan of forward activities. Deliverable D4.2 of the H2020 CoE MaX (final ver-
sion as of 30/06/2019). EC grant agreement no: 824143, CINECA, Bologna, Italy
(2019).

http://www.max-centre.eu 33

http://www.max-centre.eu

	Executive Summary
	Introduction
	Performance and portability of MaX flagship codes, libraries, and components
	FLEUR
	Quantum ESPRESSO
	Siesta
	yambo
	CP2K
	SIRIUS
	BigDFT

	Conclusions and ongoing work
	Acronyms
	References

