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Executive Summary

This final report presents a general summary of the profiling and benchmarking activities in WP4.
Thanks to this task we have at first identified bottlenecks and inefficiencies in the flagship codes; and
we continue to provide the developers a check on their performance progress.

Our screening is based on a defined set of scientific test cases on which we benchmark the codes.
This collection contains the main types of calculation that can be executed by MaX codes in
supercomputing centres. The tested systems have sizes that span several orders of magnitude. We
can thus assess the efficiency of codes in exploiting as much computational power as possible, either
in the case of very large systems (many thousands of atoms); or performing High Throughput
Computations (HTC) on small and medium-size systems, to quickly explore wide configuration spaces.

The bottlenecks identified by the benchmarks were in many cases unexpected or overlooked. They
were revealed by our tests thanks to their very large size, or because -with the intent to mimic the
resources accessible in exascale machines- we executed them with an (at the moment) unusually
large amount of computing resources.

Although specific to each code, it has been possible to broadly categorize most of the bottlenecks in a
few case types:

● Particularly in the first part of the activity, many bottlenecks were represented by
code parts whose missing or inefficient parallelization had been made apparent only
by the usage of a very large number of nodes. The work on these residual
parallelization parts has been done both using the still existing MPI parallelization,
improving the hybrid MPI + OpenMP parallelism and for the GPU ready version
offloading part of the calculation to the accelerators.

● The porting to accelerators has reduced significantly the number of MPI tasks used
for the calculations and code parts that relied on the distribution over a large number
of MPI ranks have been refactored to exploit GPUs when available.

● In other cases, bottlenecks are more structural and inherent to the algorithm or the
methodology adopted for the calculation. This has motivated the exploration of
alternative algorithms or the adoption of domain-specific libraries targeting the
issues more efficiently. In general, the optimization of the codes for the
heterogeneous architectures has involved a detailed profiling activity on all code and
of many of the case studies.

● The optimization of the I/O has been a general issue that has involved many of the
codes and benchmarks.

Later runs of the benchmarks helped us monitor and assess the work done to eliminate or mitigate
the bottlenecks. In this final report, we present for each code the current status, the ongoing work,
and the perspectives.

● BigDFT
○ combined usage of containers, AiiDA, and PyBigDFT for the fast deployment

and analysis of benchmarks;
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○ report of the latest tests on the Fugaku supercomputer with a comparison of
the code general performance on this architecture with the tests previously
collected.

● CP2K
○ general evolution of the standard test for the linear scaling algorithm using

256 water molecules; performance improvement in the RPA test with 128
water molecules using the COSMA and COSTA libraries to perform the
parallel linear algebra on GPUs.

● FLEUR
○ General screening of the benchmark time to solution in different new

architectures;
○ The progress done in scalability for the matrix and charge setup parts of the

code, where a significant performance improvement has been achieved
refactoring the access to the muffin tin coefficients;

○ The performance improvement achieved for the non-collinear magnetism
case after the optimization of the data communication for this case.

● Quantum ESPRESSO reports:
○ An update on the GrCoIr benchmark with the execution times obtained using

the A100 GPUs;
○ The better scalability of the RMM-DIIS iterative eigensolver. This algorithm

avoids the dense diagonalization bottleneck of the Davidson algorithm;
○ The performance of the completed porting of cp.x for GPUs.

● For Siesta we report the status of the main bottlenecks for the code.
○ For what concerns the performance of distributed linear algebra, important

improvements have been achieved with the usage of the ELPA specific library.
The availability of more general solvers in future versions of the library will
allow for the possibility to avoid the Cholesky decomposition bottleneck.

○ For what concerns the linear solvers some algorithmic improvements have
been implemented in the framework of WP3 and are starting to be tested.

● For YAMBO we report:
○ Performance improvements in the dipole part as a result of the streamlined

data communication between nodes and host-device memory transfers.
○ The results of the work on the I/O optimization.

The performance screening will continue in the next months. New developments of WP1, WP2, and
WP3 will be included in the oncoming code versions; and it will be also necessary to monitor the
possible novelties for what concerns alternative architectures that should become accessible in the
next future.

For what concerns the profiling activities, as these have become more inherent to the co-design part
of activities, we have decided to present them in the corresponding report.

www.max-centre.eu
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Introduction

One of the main targets of the work done during MaX phase-2 is to step up and make more portable
the performance of the flagship codes so as to make them able to exploit the enormous
computational power that will be available in exascale supercomputers.

In view of this target, WP4 has planned and coordinated the analysis and monitoring of the
performance of the MaX codes. This task has involved code developers, materials science specialists,
and supercomputing experts. Their actions have been coordinated with those of the codesign task in
WP4, and of the code development in WPs 1, 2, and 3. The task has also interacted at many stages
with WPs 5 and 6.

The first activity in the task was the identification of the set of scientific test cases to use as
benchmarks of the flagship codes. The cases were chosen so as to include all the main calculation
types, and cover several orders of magnitude of system sizes and computational loads.

The benchmarks are publicly available in a repository on GitLab together with all results of the tests1

executed during this activity.

At the first stages of the project, the inspection of the benchmark results was very helpful for
identifying many significant bottlenecks. Some of these criticalities had been unexpected or
overlooked, and they became more evident either because of the very large size of some of the
benchmarks or, in other cases, only because of the unusually large amount of computational
resources used to execute them.

The identified bottlenecks and issues were obviously specific to each code, but some general patterns
could be identified and rationalised:

● non-parallelized code parts that became inefficient when the number of MPI ranks was
pushed high;

● data structures unfit for applications distributed on many MPI ranks;
● intrinsically weakly scaling algorithms (e.g., dense diagonalization of distributed large

matrices);
● I/O bottlenecks caused by the very large size of the benchmarks or by the usage of a very

large number on MPI ranks.

On the basis of the outcomes of the benchmarks, we have planned some coding actions for the
elimination or mitigation of the identified bottlenecks.

The first results of such actions were already visible in the D4.3 report where we reported the2

benchmarks on the second release of the MaX codes. In this second deliverable, many of the
benchmarks were also executed on heterogeneous architectures based on GPUs.

This allowed us to compare the performance and the computation costs of the homogeneous
multicore architectures with those of the accelerated heterogeneous systems. At the moment the
GPU accelerated systems perform systematically faster than the traditional multicore homogeneous

2 http://www.max-centre.eu/sites/default/files/D4.4_First%20report%20on%20co-design%20actions.pdf

1 https://gitlab.com/max-centre/benchmarks
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systems. A comparison in terms of computation costs is instead more complex. Using a simplified
approach, considering, e.g., the cost in node-hours, the cost comparison would be again in favour of
the heterogeneous systems. A more thorough analysis taking into account the effective energy
consumption of calculations has been done as part of the codesign task of WP4. The results are
reported in deliverable D4.6. These measurements are more complex and are hardly feasible for the
large size calculations involved in most of the benchmarks.

This third deliverable presents the status of the benchmarks at month 36 of the project. Clearly, while
many of the issues have been solved, others have been mitigated by adopting alternative solutions or
algorithms. Beyond the solutions identified with the first benchmarking campaign, the developers
have continued to work on new solutions that could further improve on the performance of the
codes. For example, some of the new algorithms developed in WP3 have been applied for the
execution of the benchmarks, and have in many cases brought significant performance
improvements.

The results of the benchmarks not only reflect the evolution of the codes; they also follow the
improvements of the whole ecosystem: hardware, software stack, and domain-specific libraries. This
is a clear indication of how good the readiness of the codes is to follow the evolution of the
supercomputing technology.

In the next Sections we will discuss the results of the benchmarking activities for each of the MaX
codes, and finally conclude by discussing perspectives and lessons learnt during the profiling and
benchmarking campaigns.

BigDFT

Most of the work over the past months in BigDFT has been directed at bringing new features and
capacities, notably around the fragment approach, to the PyBigDFT library, or to the Sirius
integration. The performance of the code itself was not the main focus of this development, even if
every new cluster and architecture offer new challenges and insights. For instance, the Fugaku
supercomputer, with ARM processors and SVE support, was a target of choice in our developments.
In this regard, the BOAST auto-tuning framework has been extended to generate SVE instructions
when generating vector instructions (see D4.6).

New container architecture (modularity, portability, performance)

BigDFT has been distributed in Docker containers for several years. These are available for download
on dockerhub or on the Nvidia NGC initiative . This kind of distribution provides a highly optimized3 4

version of the code (with support for GPUs, MKL, and several MPI libraries). Nvidia HPC container
maker scripts are used to build the Docker or Singularity recipes. These can be further tuned to
accommodate several options. As the containers allow for fast and controlled deployment of the
executable on most of the existing platforms, they provide one ideal tool to test the performance of
the application on various setups. The use of containers for the benchmarking has also been

4 https://catalog.ngc.nvidia.com/containers

3 https://hub.docker.com/
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streamlined by using AiiDA workflows and PyBigDFT tools to handle the submission and the analysis
part of the benchmarks.

This part of the container generation system has been completely rewritten recently, to provide
better flexibility and portability. Still using HPC container maker to dynamically generate the docker or
singularity recipes using python scripts, it now supports Intel OneAPI containers for x86 platforms, as
well as Nvidia CUDA containers. The Nvidia containers provide more portability, as they are available
for ARM and IBM Power platforms, but the OneAPI container comes with Intel compilers, MKL
libraries and Intel MPI, which can provide better performances on these architectures.

The main goal of the redesign is to allow for easy generation of several SDK flavours for developers
willing to quickly validate BigDFT with multiple systems, compilers, MPI libraries, and linear algebra
libraries. Users can also quickly test several versions of BigDFT on a new cluster to test which provides
the best performance.

The combination of easy container deployment and AiiDA-based benchmarking workflows makes it
easy to characterise new systems and analyse possible bottlenecks.

Benchmarks and bottlenecks

BigDFT has been successfully deployed on the Fugaku supercomputer. This was not done with
container technology as the Singularity installation on Fugaku was not functional at this time, and the
experiments were made using the proprietary Fujitsu compilers, not available in container format.
During the initial benchmarking process, an important performance bottleneck was found in
analysing the profiling output and comparing it with the same set of benchmarks executed on other
supercomputers. The issue was tracked down to the use of internal profiling routines themselves,
which were not previously known to abnormally stress the processors in other systems. These
routines can be easily deactivated, hence mitigating the importance of this issue, but causing losses in
further retrieval of profiling information. This shows the importance of comparing benchmarks on
various platforms and keeping a centralised repository with results on different systems, in order to
quickly find such issues and mitigate them.

Fig. 1: Fugaku performance with (left) and without (right) advanced profiling routines for monomer input file,
with 64-128-256 nodes (4 MPI processes per node, 12 OpenMP threads per MPI process). Tracing is still
activated, allowing to get most of the information and easily plot these using Futile python tools, even if

detailed memory analysis and tracing are not available anymore. Improvement over previous runs is 16-22%,
with scaling improved. Flib lowlevel (light blue) overhead is now negligible.
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Fig. 2: Performance regression test of CP2K executed daily at CSCS since March 2019. The test computes the
ground state energy of 256 water molecules in the linear scaling mode. The test is executed on 6 (small) and 16

(large) GPU nodes of Piz Daint. During the past years, the scaling of the CP2K code and its libraries have been
considerably improved (~35% reduction in time-to-solution of the large run).

CP2K

CP2K is a large community code containing around ~1M lines of source code to support various types
of calculations. In the context of the project, we focused on the performance optimization of the
linear-scaling and RPA types of calculations. The work on linear scaling is covered in WP2 where we
explored the just-in-time compilation (JIT) of the GPU kernels for the DBCSR library. The evolution of
the code performance for the linear-scaling regime is shown on Fig. 2, where we report the daily
measurements of CP2K execution on Piz Daint since March 2019.

To enable the CP2K scientific demonstrator that proves the readiness of the code for the
(pre-)exascale systems, we have worked on the optimization of large tall-and-skinny matrix-matrix
multiplications. This operation was identified as a major bottleneck at the beginning of the project.
The standard tool for such distributed matrix multiplication is de-facto a ScaLAPACK library and its
HPC implementation by Intel MKL that works only on CPUs and Intel accelerators. To improve this
situation we have been working on the open-source communication-optimal multiplication library
COSMA and its ScaLAPACK interface (including COSTA library for the fast data reshuffling). The latter
allows for the use of COSMA in CP2K without introducing any change in the CP2K code. Fixing all the
corner cases and passing all of the CP2K’s regression tests has been a challenging task which is now
complete – CP2K-8.1 and higher supports COSMA linking. The final benchmark of the RPA calculations
of 128 water molecules with CP2K code on [128-1024] nodes of Piz Daint are demonstrated in Fig.3.
As a final remark, it has to be noted that the COSMA library has both NVIDIA and AMD GPU backends
and it is going to provide the performance of CP2K code on the LUMI platform from day zero.

www.max-centre.eu
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Fig. 3: Performance of the CP2K code in the RPA calculation of 128 water molecules. The benchmark was run on
the Piz Daint GPU partition, using different matrix multiplication backends. COSMA+COSTA achieves the best

performance on both CPUs and GPUs. Left panel: time spent in the matrix-matrix multiplication part
(construction of the free Green’s function). Right panel: total execution time.

FLEUR

This Section reports about the benchmarking activities on the FLEUR code and its performance
improvements. As elaborated in the executive summary of Deliverable D4.2 , our codes are very5

versatile, and allow for the calculation of many properties in diverse setups. These richness and
flexibility imply that a given code possesses many code paths, which may be chosen depending on
the nature of the simulation. The large benchmarks presented in Deliverable D4.2 reflect the most
general case (bulk non-magnetic unit cells with and without inversion symmetry with local orbitals
without spin-orbit coupling) which embraces the routines that are present in almost any calculation
with FLEUR. This is the most important direction of the work and we will report the progress in this
kind of calculation. Nevertheless, during the execution of the project, mainly under the influence of
work package WP6 (where the simulations of complex particle-like magnetic structures are being
performed) another very significant case - non-collinear magnetic systems with spin-orbit coupling -
also came into the performance investigation. Benchmarks on other architectures such as Arm, AMD,
and Nvidia GPUs are shown at the end.

5

http://www.max-centre.eu/sites/default/files/D4.2%20First%20report%20on%20code%20profiling%20and%20
bottleneck%20identification%2C%20structured%20plan%20of%20forward%20activities.pdf
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General case: matrix setup & new charge

The muffin-tin matching coefficients can be represented as matrices, one matrix for every atom. One
dimension of such a matrix is the number of basis functions (which is usually about 100 times the
number of atoms) and the other is the number of angular momentum indices (which is usually about
100). These coefficients are needed in the calculation of the non-spherical part of the Hamiltonian
matrix, charge densities, and contribution from the local orbitals (LO). It is therefore very important
for the performance of the code that reading and writing to the arrays representing the muffin-tin
coefficients is done according to the way they are stored. After tidying up all the accesses to these
matrices, we have seen the expected improvement in the non-spherical setup, LO-setup, and new
charge generation (Tab. 1). Additionally, for the case of real matrices, OpenMP pragmas were added
in the non-spherical matrix setup. The performance evolution of the FLEUR code during MaX phase-2
can be seen in Figs. 4 and 5.

Fig. 4: Performance evolution of the benchmark TiO2 1000 atoms (complex matrix). The improvement from
the Release MaX3.0 to the MaX3.1 is mostly due to the better data layout, from the Release MaX3.1 to the
MaX 4.0 is mainly due to the optimization of the spherical setup, from the Release MaX4.0 to the MaX5.0 is

mainly due to the memory access optimization to the muffin-tin coefficients.
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non-spherical setup, sec local orbitals, sec new charge generation,
sec

# nodes before after before after before after

16 372.63 304.74 43.03 40.16 116.15 62.70

32 257.53 194.26 42.75 41.46 99.51 42.65

64 196.38 138.39 42.61 42.42 98.16 39.79

128 169.29 108.39 42.08 40.05 89.7 32.74

Table 1: Runtime improvement of the non-spherical matrix setup, calculation of local orbitals and new charge
generation due to the access optimization to the muffin-tin coefficients. The measurements are performed on

16, 32, 64 and 128 Intel Skylake nodes (CLAIX, RWTH Aachen University), 48 cores/each. Benchmark: TiO2 1078
atoms.

Fig. 5: Performance evolution of the benchmark STO 3750 atoms (real matrix). This calculation was not
possible with the version MaX3.0. The measurements with the version MaX3.1 were done on the CLAIX

machine during the installation phase, so it was very unstable. The improvement from the Release MaX4.0 to
the MaX5.1 is due to the memory access optimization to the muffin-tin coefficients and added

multi-threading in the non-spherical matrix setup; both versions were tested on the SuperMUC-NG machine.
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Non-collinear magnetism case

Considering a system with a given number of atoms, the non-collinear magnetic simulation requires
four times more memory and eight times more time. These differences come from the increased
Hamiltonian and overlap matrices: these dense complex Hermitian matrices double in size in both
directions. Additionally, there are some new routines for the matrix setup which have not been
considered from the performance point of view. Before attempting the fine-tuning of performance
for large systems, missing parallelism was added in the subroutine hsmt_distspins. The parallelization
of this specific routine, never considered before, made the muffin-tin setup more than 5 times faster
and more than halved the whole execution time (Tab.2). After that, the tests with the bigger systems
(256, 512 and 1024 atoms) became possible. These improvements are included in the code from the
MaX 5.0 Release.

hsmt_distspins, sec Total MT, sec Total iteration, sec

before 249.49 363.65 545.28

after 11.34 65.92 230.89

speedup 22.0 5.5 2.36

Table 2: Runtime improvement after the parallelisation of the subroutine “hsmt_distspins” is shown together
with a comparison of the whole muffin-tin setup (MT) and the whole self-consistency interaction (last column).
Measurements were done with a small magnetic test case MnGe with 128 atoms on one node of CLAIX, Aachen

(Intel Skylake, 48 cores).

The data layouts for the setup of the matrices and for the diagonalization are different: 1-column
cyclic for the first and block-cyclic for the second, and the matrices are redistributed between the
setup and the diagonalization via a ScaLAPACK call. This redistribution did not take much time in the
non-magnetic and collinear case, while it turned out to be a serious bottleneck in the non-collinear
case. Here, for the spin-up-spin-down part of the Hamiltonian matrix, a transposed upper half of the
distributed matrix needs to be added to the lower part, which requires some reshuffle of the data
since the data are created column-wise but are expected row-wise. This was done via a call to the
pzgeadd subroutine. With the 1-column cyclic data layout, the matrix elements were sent separately
which drastically reduced the performance of the code for the large systems. After implementing a
custom routine that first gathers data to be sent and then transfers them as a package, the times
went significantly down (Tab.3). These and some other minor optimizations made it possible to
include large non-collinear magnetic systems with over 512, 1024 and 1600 atoms (Fig.6) in the
benchmark set and made possible calculations of Bloch points and other complex magnetic
structures as it will be shown in WP6.

www.max-centre.eu
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128 nodes 256 nodes 512 nodes

before 125.79 sec 218.81 sec 647.32 sec

after 14.97 sec 39.01 sec 32.84 sec

speedup 8.40 5.61 19.71

Table 3: Runtime improvement of the matrix redistribution after implementing the custom communication
routine. Test case: MnGe supercell 4x4x4 with 1024 atoms. Hardware: Intel Skylake, 48 cores/node

(SuperMUC-NG, Munich).

Fig. 6: Scaling of three large non-collinear magnetic benchmarks with 512 (magenta), 1024 (green) and
1024 atoms (blue). Calculations were performed with the MaX Release 5.0 on the SuperMUC-NG

supercomputer.

Benchmarks on other architectures

We also benchmarked the code on other architectures such as AMD, Arm, and Nvidia GPUs and
compared the performance of the code with that on the Intel architecture. Please note that in case of
AMD and Arm CPUs there was no special optimization tuning for these architectures (except
appropriate compiler flags). For the AMD, the performance comparison of different combinations of
hardware and software, i.e. one case with Intel Broadwell CPU + Intel compiler + IntelMPI + Intel MKL,
another one with AMD Epyc CPU + gcc + BLIS + libFLAME + ScaLAPACK + ParaStationMPI, and a mixed
one with AMD Epyc CPU + Intel compiler + IntelMPI + Intel MKL, show similar performance on
machines with similar peak performance (Fig.7).

www.max-centre.eu
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On the JUAWEI cluster (Arm 32 cores Cortex A-72 architecture) we were not able to use the
ScaLAPACK library: the code compiled but the execution ran into the time limit event after 20 times
increase of the requested time. This is the reason why we have tested only the highest level of the
MPI parallelization, i.e. over k-points (Tab.4). We also compared the execution on one MPI rank with
the threads spread over the whole node for two cases, once for the Arm Cortex A-72 node and then
for the Intel Broadwell. These nodes have comparable peak performance: 614 and 840 GFlops for the
Arm and Intel machines, respectively (Tab.5). It is nice to see that the execution times of the whole
iteration are also similar, though the distribution of the time between different code parts varies
considerably.

The work on the porting of the matrix setup to GPUs has been continued. The previous
implementation with CUDA Fortran was replaced with OpenACC. Two benchmarks, CuAg with 256
atoms and GaAs with 512 atoms were tested on the JURECA-DC machine in Jülich, Germany.
Simulations were performed on 1, 2, and 4 nodes, each containing either 2 AMD Epyc CPUs or 4
NVIDIA A100 GPUs (Tab.6).

Test case # MPI potential mat. setup diagonal. new charge Whole iter.

NaCl
64 atoms
2 k-points

1 20.38 35.12 316.63 14.78 392.28

2 36.56 59.86 176.07 17.93 299.6

AuAg
108 atoms
4 k-points

1 56.83 521.15 5085.2 199.14 5887.83

2 71.49 902.93 5057.04 232.45 6323.41

4 95.65 1799.93 3441.58 366.6 5813.61

Table 4: Benchmarks on Arm, GCC + OpenBLAS+OpenMPI, MaX Release 5.0. Different parts of the code
(potential generation, setup of the matrices, diagonalization and generation of the new charge) is shown

together with the whole self-consistency iteration.
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Fig. 7: Comparison of the performance of the FLEUR code for the same benchmark with different
combinations of hardware and software: i) Intel Chip + Intel compiler + IntelMPI + Intel MKL (CLAIX,

magenta), ii) AMD Chip + AMD SW (JURECA, green), iii) AMD Chip + Intel SW (HAWK, blue). Test case GaAs
512 atoms. Code Release MaX 5.1. More information about the machines is on the plot.

CPU # threads potential mat. setup diagonal. new charge Whole iter.

Intel 24 2.95 3.28 166.43 3.88 178.12

Arm 64 20.4 17.16 159.42 9.99 211.6

Table 5: Benchmarks on Arm Cortex A-72 node with 64 cores vs. Intel Broadwell with 24 cores, with peak
performances of 614 and 840 GFlops respectively. Test case: NaCl 64 atoms. Different parts of the code

(potential generation, setup of the matrices, diagonalization and generation of the new charge) is shown
together with the whole self-consistency iteration.
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Test case CuAg, 256 atoms GaAs, 512 atoms

# nodes 1 2 4 2 4

CPU 200.92 109.62 61.92 1465.56 750.53

GPU 22.05 15.04 11.21 244.43 189.95

Table 6: Runtime comparison between execution on CPU (AMD Epyc, 2 x 64 cores/ node) and GPU (4 x NVIDIA
A100/node) for the matrix setup. Two benchmarks are presented: CuAg 256 atoms and GaAs 512 atoms.

Simulations were done on 1,2,4 and 2,4 nodes respectively. Only measurements of the matrix setup are shown.
FLEUR version MaX 5.1.

Quantum ESPRESSO

In the last year, the development work in Quantum ESPRESSO concerning performance was mainly
aimed at the completion of the GPU acceleration of cp.x, offloading some residual parts of the code
that had become significant bottlenecks. The residual acceleration has involved the Gram-Schmidt
orthogonalization, the force and stress computation, and the offloading to GPUs of the computation
of the density functional terms. This has allowed for a significant improvement of the performance,
with also a large reduction in the computation cost in terms of node-hours.

For what concerns pw.x, the main novelties come from the work on alternative algorithms for the
iterative diagonalization of the Hamiltonian operator. All of these algorithms aim at removing or
reducing the usage of dense diagonalization of large matrices that is the main bottleneck of the
Davidson algorithm for large systems. The dense diagonalization bottleneck is also significantly
alleviated by the increase of device memory provided by new GPU cards, because this allows for the
allocation and efficient diagonalization of larger matrices.

In the following parts of this Section we present the benchmark data illustrating the achievements
listed above.

Update on pw.x: new hardware and algorithms

Graphene-Co-Ir benchmark on A100 GPU cards

The increase of device memory in A100 NVidia cards (40 or 80 Gb) typically leads to a significant
improvement of the pw.x performance on CUDA systems. In particular, we find a significant mitigation
of the memory limitations that have hindered the scaling of very large tests.

The 80 GB memory card allows for the execution of the Graphene-Co-Ir benchmark with a minimum
number of 4 A100 GPUs.

Using from 1 up to 12 nodes, each equipped with 8 A100 GPU cards and 64 AMD EPYC cores, we have
been able to distribute the calculation up to the maximum possible number of pools; using for each
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pool 4 or 8 GPUs. Thanks to the full pools distribution we obtain (Fig. 8) an almost ideal parallel
efficiency up to 6 nodes (12 pools, 4GPUs per pool). Over 6 nodes further speedup is obtained using
intrapool parallelism. For this, passing from 4 to 8 GPUs per pool, we obtain an average speedup of
about 1.5 (Fig. 9).

Fig. 8: Average time per iteration and speedup for the GrCoIr benchmark run on an A100 cluster. Each node
is provided with 8 A100 NVidia Cards.

Fig. 9: Speedup for parallelism inside each pool. The times per iteration and speedup have been obtained
considering an average of the different executions plotted in Fig. 8.
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CNTPOR8 benchmark: scaling improvement with the new RMM-DIIS algorithm

The main algorithm used in pw.x for the iterative diagonalization of the Hamiltonian is the Davidson
algorithm. This approach performs at each step the diagonalization of a dense matrix whose order is
a multiple of the number of bands (proportional to the number of simulated electrons). The
algorithm is very efficient as long as the number of bands is small and starts performing poorly when
the number of bands is on the order of thousands. For large calculations in massively parallel
machines, the dense diagonalization becomes the bottleneck because of the intrinsic limitation posed
by the performance of state-of-the-art libraries for parallel diagonalization (e.g. SCALAPACK, ELPA,
etc.).

To reduce the impact on performance we have thus started to explore alternative approaches that
avoid or make less frequent use of dense parallelization of large matrices. At the moment, the
KS_Solver library of QE features 4 alternative iterative algorithms CG, PPCG, ParO and RMM-DIIS.

While reducing the usage of dense linear algebra, the first three approaches (CG, PPCG, and ParO)
still need to be integrated with the ongoing work on band-group parallelism in order to become
effectively competitive with Davidson in very large benchmarks. They are already very useful in cases
where the Davidson solver fails, or to stabilize the RMM-DIIS solver. This latter instead already
provides a better scaling alternative to the Davidson algorithm. More work in the WP3 context is
ongoing to solve the stability issues that, in the current version, are avoided by using it in
combination with other solvers.

We report here (Fig. 10) our results for RMM-DIIS in the CNTPOR8 benchmark. The calculations were
executed on the A3 partition of the Marconi cluster of CINECA comparing the speedup obtained with
the new iterative solver against the Davidson performance. Interestingly, the RMM-DIIS algorithm is
generally as efficient as the Davidson and scales better.

Acceleration of cp.x using OpenACC and CUDA-Fortran

The porting of the cp.x quantum engine has been completed and will be released for production in
version 7.0 of Q.E. For what concerns mathematical libraries and low-level routines the porting reuses
the already accelerated CUDA-Fortran code parts. At the higher level, similar to what is happening for
the high-level drivers in pw.x, the GPU porting has been done using the OpenACC model. This avoids
the duplication of global variable references and the splitting of the high-level routines. A detailed
description of this porting is given in other deliverables. Here we report the first set of benchmark
tests for the accelerated version.

The benchmarks and the profiling demonstrate that the porting has already reached an acceptable
level of performance. Ongoing work for optimizing device-host data will likely improve the
performance.

www.max-centre.eu
19



HORIZON2020 European Centre of Excellence
Grant Agreement n. 824143

Deliverable D4.5
Final report on code profiling and bottleneck identification

Fig. 10: Comparative performance of Davidson and RMM-DIIS algorithms for the CNTPOR8 benchmark run
on MarconiA3@CINECA. Each node is provided with 48 Intel SkyLake cores.

W256 benchmark

As a general baseline benchmark for the accelerated cp.x performance we report a standard
calculation that includes both the initialization and 50 steps of molecular dynamics (MD) for a system
made of 256 water molecules. The benchmark has been run on the Marconi100 cluster of CINECA.
Each node of the cluster has 4 NVIDIA Volta V100 GPUs and 32 IBM Power9 AC922 cores.

The speedup of the time to solution is reported in Fig. 11, while Fig. 12 shows the extrapolated cost in
node-hours for 1000 MD steps.

The benchmark shows how the performance at a low number of nodes is already satisfactory.
Improvements may be expected by the ongoing work on the optimization of the device-host memory
synchronization.
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Fig. 11: Speedup for the W256 test with the accelerated versions of cp.x.

Fig. 12: Computation cost in node-hours for a 1000 steps MD simulation of the W256 system.
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ZrO2 benchmark

Fig. 13: Efficiency (left panel) and speedup (right) for the ZrO2 benchmark of cp.x.

This benchmark targets the Gram-Schmidt (GS) orthogonalization routine used in cp.x. The GS is used
in the initialization phase and in other simulation types implemented in cp.x. The computational cost
of the GS scales:

1. with the square of the number of bands times the number of plane waves for what concerns
the scalar product between bands;

2. for non-norm-conserving pseudopotentials, the augmentation part of the scalar products
produces an additional cost proportional to the number of bands times the number of
projectors of the pseudopotentials.

In this benchmark (Fig. 13) the calculation is composed by the wave function initialization plus 10
steps of molecular dynamics (MD). The simulated system is constituted by a slab of ZrO2. The system
has 792 atoms and 3168 bands. Because of these dimensions and of the very short duration of the
MD phase, the time to solution is mainly determined by the cost of the initialization phase and within
this by the GS part.

The MPI+OpenMP parallelization works by distributing the bands in different groups (band groups)
and, within each band-group, by distributing coefficients and wave-function operations among the
MPI ranks. For what concerns the computation of the augmentation part, within each band group,
the projectors are also distributed among the ranks. OpenMP is mainly used within each rank to
vectorize wave-function operations.

The accelerated version for heterogeneous machines maintains the same setup of the MPI groups
with all the OpenMP regions directly translated to OpenACC. To improve the performance with a
smaller number of MPI ranks we also distribute the computation of the augmentation part over
OpenACC gangs. This allows for optimal performance already with the minimal number of nodes
needed to meet the large device memory requirements of this test.

The execution times are shown in Tab. 7: it is evident that the openACC parallelization significantly
improves the performance on heterogeneous machines. In terms of time-to-solution, the GPU
version is faster. The effective usage of the computational resources --in terms of node-hours-- is also
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orders of magnitude better (Fig. 13) in the accelerated execution as one can clearly see in the left
panel of Fig. 13.

# nodes M100@CINECA
t.t.s (secs)

MarconiA3@CINECA
t.t.s (secs)

1 -- 3600

2 222 1983

4 164 1126

8 133 874

Table 7: Execution times for the ZrO2 benchmark in an heterogeneous machine
(M100) and in a homogeneous HPC machine.

Further work is ongoing for reducing the amount of device memory needed and thus the minimal
number of nodes needed for the calculation. This will bring an improvement on the side of efficient
resource utilization. Other improvements are expected on the side of band group parallelism,
improving the general speedup for both architectures.

Siesta

Summary of identified bottlenecks

Acceleration of Cholesky step in diagonalization solvers

The previous cycle of Siesta optimization within MaX saw the integration of GPU acceleration

capabilities for the diagonalization solver by means of the ELPA library, both through a native Siesta

interface and through the ELSI library. Significant speedups were reported for most of the phases of

the operation of the solver, including transformation back and forth from the tridiagonal form.

However, the Cholesky step that transforms the generalized eigenvalue problem to a standard one

(needed since Siesta uses a non-orthogonal basis) was not accelerated (see Fig. 14).

The Cholesky decomposition of the overlap matrix can be kept and re-used during the scf cycle, so

the cost is incurred only once per scf cycle. For single-point calculations, which typically use on the

order of tens of scf steps, this is not a problem, but it is for molecular-dynamics calculations in which

the converged density matrix or Hamiltonian from a previous geometry can be reused to accelerate

the scf convergence.
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Then, the number of sfc steps per MD step is typically small, and the Cholesky step becomes a

bottleneck. We contacted the ELPA developers about this, and they agreed to put the acceleration of

the Cholesky step near the top of their priority list.

Density-matrix building step from wavefunctions

When using the diagonalization solver, an extra step is needed to construct the density-matrix (DM)

from the occupied wavefunctions. The DM is a central object in the Siesta implementation, containing

the electronic-structure information in a convenient (and typically sparse) data structure. The sparsity

of the DM is, however, an obstacle to the vectorization and acceleration in modern architectures,

including GPU-accelerated ones (see Fig. 14). In contrast to the Cholesky step discussed above, the

building of the DM is needed at every scf step. We are working towards defining strategies to improve

the performance of this step in modern architectures. One obvious idea, trading memory for

processor efficiency, needs to be analysed with care so that scalability is not compromised.

Fig. 14: Speedups obtained with the GPU acceleration of the ELPA library, as driven by the ELSI interface layer,

for a SIESTA run with approximately 35000 orbitals, in Marconi 100. The relevant phases of the operation of the

solver are represented by different colors.
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Implications of size of Hamiltonian spectrum for FOE linear-scaling solvers

This is a well-known bottleneck that has been already reported in connection with the integration of

the CheSS library for solving the electronic structure problem with the Fermi Operator Expansion

(FOE) method, a linear-scaling scheme. The number of terms needed in the polynomial expansion of

the Fermi-Dirac function grows linearly with the size of the Hamiltonian spectrum (note in contrast

that our other massively parallel solver, PEXSI, has only a logarithmic dependency). The size of the

spectrum is directly related to the cardinality of the basis set, and hence we proposed (actually as

one of the algorithmic developments in WP3) to implement a basis-contraction scheme that could

reduce that cardinality without compromising accuracy. We can now report that we have a first

implementation of the scheme which works as expected, and improves on previous efforts in the

literature by being able to mix primitive orbitals with different angular momentum. The new scheme

provides a boost in efficiency across the board (not limited to the linear-scaling FOE solver), and at

the same time, through the coefficients of the "hybridized" atomic-based orbitals, offers extra

chemical information that we are now beginning to explore. Further details are given in the relevant

section of the WP3 deliverable.

Pre-conditioning of initial step in OMM linear-scaling solver

Another WP3-related implementation is a refactoring of the traditional linear-scaling solver in Siesta,

based on the Orbital Minimization Method (OMM). The refactoring is discussed in more detail in the

WP3 deliverable. Here we just note that the solver has gained performance and flexibility of

operation (through the abstraction of the needed matrix handling and the dispatch to appropriate

backends). A remaining bottleneck is the initial convergence of the algorithm towards the basin of the

orbital coefficients in the absence of a proper pre-conditioning. Typically, over a thousand

conjugate-gradient steps are needed for the minimization of the modified energy functional in the

first SCF step (see Fig. 15). This problem is not present in the dense form of the scheme, but that one

scales as the cube of system size. We are working towards the treatment of this bottleneck. A starting

diagonalization could obviously be a cure, but it would not scale appropriately.
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Fig. 15: Number of conjugate-gradient (CG) iterations as a function of the index of the self-consistent-field (SCF)

step for the calculation of the ground state of 12x12 supercell (288 atoms) of boron nitride from scratch using

the OMM scheme. Preconditioning or Cholesky transformation (not available in the sparse form of the scheme)

is essential for the acceleration of the convergence in the first steps.

IO: tailored parallel distributions to avoid reordering and optimize disk access

Even though the I/O workload of SIESTA is typically moderate, it can become a bottleneck and limit
the scalability under certain circumstances. This applies in particular to the writing of the sparse
matrices, such as the density matrix, the Hamiltonian or the overlap matrix. The density-matrix and
Hamiltonian might need to be written to disk at every SCF step for checkpointing purposes. Other
data structures, such as charge densities, potentials, and wavefunctions, are typically needed on disk
only at the end of the run for post-processing purposes. However, new developments now in the
pipeline, such as on-the-fly computation of the thermal flux, might need the transfer of sizable
datasets.
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Fig. 16: Walltime for the writing to disk of the Siesta density matrix, for three different system sizes (with
approximately 7000, 57000, and 115000 orbitals, respectively), and using three different I/O strategies.

SIESTA contains an interface to the parallel version of the NetCDF library that enables in principle the
distribution of I/O over all the cores used by the simulation. We have performed detailed benchmarks
of the I/O using various approaches, and found that the currently used approach does not perform
well. As can be seen from the following figure, the parallel NetCDF performance decreases when the
number of cores is increased. When performing the write operations in sequential form, i.e. allowing
only one single core to write to disk, the performance slightly improves in most cases, but remains
unsatisfying. This hints at the need to limit the number of disk accesses, so we implemented a new
scheme that trades memory usage for transfer time. MPI processes send their data to the I/O master
process, and the latter employs staging buffers to reorder the data so that very few disk operations
are needed. As can be seen from Fig. 16, the new version now scales much better, and the writing
time is almost independent of the number of cores used. We are currently studying intermediate
solutions, such as writing in parallel but using only a subset of the processes, and employing
intermediate parallel distributions of the data so that the reordering buffers are not needed.

Yambo

The Yambo code implements extensive functionality for memory and time profiling of the various
sections of the code, that can be enabled at compile time. The system used as benchmark is a
defective 2×2×3 TiO2 rutile bulk supercell with an interstitial H impurity (72+1 atoms), the same
system used also in the two previous MaX phase-2 deliverables on code profiling and bottleneck
identification (D4.2 and D4.3). Henceforth it will be referred to as the rutile-H benchmark. Also, the
chosen target architecture is the same (Marconi-100 at CINECA), and this gives us the opportunity to
have a very good comparison between three versions of the Yambo code. All the three versions used
for this benchmark are a sort of pre-release (corresponding to v4.5, 5.0, and v5.1, respectively) and
this is why they are reported as “dev” versions in the label of the figures. The development of the
code was intense and aimed both at introducing new features and solving some issues. Here below
will be reported only two of the main issues considered as bottleneck: the first related to the
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computation of the dipole matrix elements, and the second related to the communication between
the processes of the header data of the dipole matrix file.

Dipoles bottleneck

Fig. 17: Rutile-H benchmark executed on Marconi-100 at CINECA; comparison between the versions 4.5(dev)
(top left) and 5.0(dev) (top right) of the Yambo code. The same benchmark was also executed on Marconi-SKL
at CINECA (Intel Skylake architecture, with 48 cores per node). The Dipole bottleneck was detected and solved

(see bottom plot) also for not accelerated architectures.

The profiling work done in the context of the previous deliverable (D4.2) allowed us to identify a
possible bottleneck in the driver that computes the dipole matrix elements. As easily seen in the left
plot of Fig. 17, the dipoles require on average 82% of the calculation time for the chosen input data.
Shortly before the submission of the deliverable D4.2 we were able to re-implement the GPU porting
of dipoles, obtaining a significant improvement in the timing, see the right plot of the Fig. 17. With
this new implementation the dipoles require on average 52% of the calculation. The most interesting
comparison is the one related to the same number of nodes or MPI tasks. Considering the calculation
on 20 nodes (80 MPI tasks), before the fix on the dipoles this part of calculation spent 1623 s while
after the fix it is decreased at 162.77 s with a speedup of 10. The walltime goes from 1796 s to 315 s
that means an overall speedup of 5.7. For completeness, in the bottom panel of Fig. 17 we report the
scaling of the same system as computed on the Marconi-A3 partition (equipped with Intel Skylake
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CPUs), also showing a less pronounced role of the dipole kernel in the overall time-to-solution with
respect to the initial GPU-porting without bottleneck fix.

Yambo
version

MPI tasks Dipoles X0 X Self
energy

Other Walltime

4.5(dev) 80 1623.00 132.14 7.91 16.95 16.00 1796

5.0(dev) 80 162.77 91.14 31.22 18.58 11.28 315

Table 8: Rutile-H benchmark executed on Marconi-100 at CINECA. Comparison between the versions
4.5(dev) and 5.0(dev) of the Yambo code for the single run on 20 nodes (using 4 GPUs and 4 MPI tasks per

node).

Asynchronous I/O

Fig. 18: Rutile-H benchmark executed on Marconi-100 at CINECA. Comparison between the versions 5.0(dev)
(left) and 5.1(dev) (right) of the Yambo code.

In the last months most of the work done in the development of the Yambo code was spent in the
improvement of new features and in the addition of a new backend that implements the acceleration
on GPUs using OpenACC pragmas. However, the bottleneck identification process continued using the
already tested strategy, which gave excellent results. In addition to the time profile written in the
report file, a detailed log file is printed by some selected processes. The comparison of these two
profile reports allows us to increase an already good understanding of the code profiling. In the left
plot of Fig. 18 it is easy to see that the red bar (other) increases with the number of MPI tasks. With a
deeper look into the Yambo log files we were able to identify that this increase is related to the
communication between the processes of the header data of the dipole matrix file. The
communication was a broadcast from the root process to all the other processes and this is the issue
that led to less scalability. The problem was solved by introducing a mechanism that allows for an
asynchronous I/O operation. After the writing of the dipoles matrix on disk, the root process
continues the calculation leaving the other processes with the possibility to read the header data
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directly from the file, and before starting the reading, they check for the presence of the file up to a
given maximum time-limit. This solution leads to an increase of efficiency of scalability from 55.8% to
66.0% on 50 nodes (200 MPI tasks), see Fig. 18.

Conclusions

This is the last report foreseen for the profiling and benchmarking activity of MaX phase-2. This
report focuses mostly on the results of the benchmarking activity and on the outcomes in terms of
improved performance and usage experience for the users.

The screening during this whole period has covered a large variety of use cases. The benchmarks have
been tested using large numbers of MPI ranks plus threads for multicore homogeneous systems or
accelerators for heterogeneous architectures. These large amounts of computational resources were
meant to approach as close as possible those that will likely be generally accessible in future exascale
machines. In this sense the results of the benchmarking activity can give a first baseline of what
materials scientists will be able to do on exascale machines with our codes.

The last results of the benchmarks demonstrate that the codes perform efficiently on the currently
available supercomputers and their performance evolves together with the increase of available
computational power. This is very promising for what the overall performance of MaX codes will be in
exascale machines, but they also point out that the solution of residual scaling and efficiency issues
can bring further performance improvements.

The profiling activity has been in the first part of the task oriented to the identification of code
inefficiencies and was mostly done by the code developers. The focus has then passed to more
technical aspects related to architectural and co-design questions. It has for this reason passed under
the care of the supercomputing specialists of HPC centers.

For completeness and coherence, most of the reporting on profiling has been thus moved to the D4.6
deliverable written together with the present document. Also the energy consumption analysis,
closely related to profiling, has been moved to D4.6 for the same reasons.

The next report on performance portability will give a synthetic view of these activities. The
benchmarking activity will keep going in the next months. These will continue to be a valuable tool to
assess the code efficiency on new systems, notably including EuroHPC pre-exascale machines as soon
as available. For this reason we are working at making the content of the benchmark repository more
readable and accessible to third parties users.
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