

All-electron DFT using the FLEUR code

MaX "Materials Design at the Exascale", has received funding from the European Union's Horizon 2020 project call H2020-INFRAEDI-2018-1, grant agreement 824143

Introduction to FLEUR and FLAPW

Gregor Michalicek

Pushing FLEUR to the limits: Large magnetic setups

Uliana Alekseeva

Getting FLEUR to run on your machine, Future of FLEUR

Daniel Wortmann

Use Q&A button during the talks to ask questions

You will also get questions on your background

Q&A session after the talks

Introduction to FLEUR and FLAPW

Gregor Michalicek

MaX "Materials Design at the Exascale", has received funding from the European Union's Horizon 2020 project call H2020-INFRAEDI-2018-1, grant agreement 824143

Outline

Theoretical background

- The FLAPW method and the LAPW basis
- Separation of core electrons from valence electrons
- Local orbitals
- Film setups
- Obtaining high-presision results
 - Semicore states and ghost bands
 - Systematic convergence in MT spheres
- Strengths, Challenges, and Features
- Using fleur
- Conclusion

What is Fleur?

Features

- FLAPW DFT code
- All electrons
- Full potential
- Linearized augmented plane waves
- Open source (MIT license)

- Spin-orbit coupling
- Noncollinear magnetism
- Many XC functionals
- Forces
- Unit cells several 1000 atoms

History

- Mainly developed in Jülich
- Complex magnetic systems, surface magnetism

Environment of Applications

Outline

Theoretical background

- The FLAPW method and the LAPW basis
- Separation of core electrons from valence electrons
- Local orbitals
- Film setups
- Obtaining high-presision results
 - Semicore states and ghost bands
 - Systematic convergence in MT spheres
- Strengths, Challenges, and Features
- Using fleur
- Conclusion

Where in MaX is FLEUR?

The LAPW basis

 Atom-centered functions in MT spheres matched in value and slope to plane waves in interstitial region (IR)

$$\phi_{\mathbf{kG}}(\mathbf{r}) = \begin{cases} \frac{1}{\sqrt{\Omega}} e^{i(\mathbf{k}+\mathbf{G})\mathbf{r}} & \text{for } \mathbf{r} \in \mathbf{IR} \\ \sum_{L} \left[a_{\mathbf{kG}}^{L\alpha} u_{l}^{\alpha}(\mathbf{r}_{\alpha}, \mathbf{E}_{l}^{\alpha}) + b_{\mathbf{kG}}^{L\alpha} \dot{u}_{l}^{\alpha}(\mathbf{r}_{\alpha}, \mathbf{E}_{l}^{\alpha}) \right] \mathbf{Y}_{L}(\hat{\mathbf{r}}_{\alpha}) & \text{for } \mathbf{r} \in \mathbf{MT}^{\alpha} \end{cases}$$

• u_l^{α} and \dot{u}_l^{α} are solutions and energy derivatives for the spherical potential at energy parameters E_l^{α}

The linearization within the LAPW basis

 Description in MT spheres is not systematically improved by increasing the reciprocal cutoff parameter K_{max}

Linearization of solutions u_l at arbitrary energy ϵ

- $U_l^{\alpha}(r_{\alpha},\epsilon) = U_l^{\alpha}(r_{\alpha},E_l^{\alpha}) + (\epsilon E_l^{\alpha})\dot{U}_l^{\alpha}(r_{\alpha},E_l^{\alpha}) + \mathcal{O}\left[(\epsilon E_l^{\alpha})^2\right]$
- Due to the restriction to the function space spanned by $u_l^{\alpha}(r_{\alpha}, E_l^{\alpha})$ and $\dot{u}_l^{\alpha}(r_{\alpha}, E_l^{\alpha})$ we obtain a linearization error.
- This description is sufficient to obtain accurate results for many materials.

Separation of core electrons from valence electrons

- The LAPW basis is orthogonal to core electron states.
 - (If core electron states vanish at MT sphere boundary)
 - Allows separate determination of core electron wave functions and energies
- Core electrons
 - Representation for each atom separately on radial mesh
 - Fully relativistic treatment
- Valence electrons
 - Representation by LAPW basis
 - Scalar-relativistic description in MT spheres
 - Optional inclusion of spin-orbit coupling
- Semicore states can lead to ghost bands

Extending the LAPW basis with local orbitals

Additional basis functions localized in MT spheres

 $\phi_L^{\mathsf{lo}}(\mathbf{r}) = \left[a_L^{\mathsf{lo}} u_l^{\alpha}(r_{\alpha}, E_l^{\alpha}) + b_L^{\mathsf{lo}} \dot{u}_l^{\alpha}(r_{\alpha}, E_l^{\alpha}) + c_L^{\mathsf{lo}} u_l^{\alpha}(r_{\alpha}, E_l^{\mathsf{lo}})\right] Y_L(\hat{\mathbf{r}}_{\alpha})$

- Mainly used to describe semicore states
- Determination of a^{lo}_L, b^{lo}_L, and c^{lo}_L by enforcing zero value and slope at the MT boundary, as well as a normalization condition on the local orbital

Extending the LAPW basis with local orbitals

Additional basis functions localized in MT spheres

 $\phi_L^{\mathsf{lo}}(\mathbf{r}) = \left[a_L^{\mathsf{lo}} u_l^{\alpha}(r_{\alpha}, E_l^{\alpha}) + b_L^{\mathsf{lo}} \dot{u}_l^{\alpha}(r_{\alpha}, E_l^{\alpha}) + c_L^{\mathsf{lo}} u_l^{\alpha}(r_{\alpha}, E_l^{\mathsf{lo}})\right] Y_L(\hat{\mathbf{r}}_{\alpha})$

- Semicore states (SCLO)
 Choose *E*^{lo} to be energy of semicore state
- Unoccupied orbitals (HELO)
 - Choose *E*^{lo} above Fermi energy
- Higher derivative LOs (HDLO)
 - Choose ü^α_l(r_α, E^α_l) instead of u^α_l(r_α, E^{lo}_l)

Describing films and surfaces

- Film setups break periodicity in one direction
- Description by basis sets with built-in periodicity:
 - Periodic slab calculations
 - Adapt basis set (Fleur)
- Simulate surfaces by increasing film thickness

M. Bode et al., Nature 447, 190 (2007)

The LAPW basis for films

$$\phi_{\mathbf{k}_{\parallel}\mathbf{G}}(\mathbf{r}) = \begin{cases} \frac{1}{\sqrt{\Omega}} e^{i(\mathbf{k}_{\parallel} + \mathbf{G})\mathbf{r}} & \text{for } \mathbf{r} \in \mathsf{IR} \\ \sum_{L} \left[a_{\mathbf{k}_{\parallel}\mathbf{G}}^{L\alpha} u_{l}^{\alpha}(\mathbf{r}_{\alpha}, \mathbf{E}_{l}^{\alpha}) + b_{\mathbf{k}_{\parallel}\mathbf{G}}^{L\alpha} \dot{u}_{l}^{\alpha}(\mathbf{r}_{\alpha}, \mathbf{E}_{l}^{\alpha}) \right] Y_{L}(\hat{\mathbf{r}}_{\alpha}) & \text{for } \mathbf{r} \in \mathsf{MT}^{\alpha} \\ \left[a_{\mathbf{k}_{\parallel}\mathbf{G}}^{\text{vac}} u_{\mathbf{k}_{\parallel}\mathbf{G}_{\parallel}}^{\text{vac}}(z, \mathbf{E}^{\text{vac}}) + b_{\mathbf{k}_{\parallel}\mathbf{G}}^{\text{vac}} \dot{u}_{\mathbf{k}_{\parallel}\mathbf{G}_{\parallel}}^{\text{vac}}(z, \mathbf{E}^{\text{vac}}) \right] \\ \times \frac{1}{\sqrt{A}} e^{i(\mathbf{k}_{\parallel} + \mathbf{G}_{\parallel})\mathbf{r}_{\parallel}} & \text{for } \mathbf{r} \in \mathsf{VR}^{\mathsf{vac}} \end{cases}$$

A =surface area

Đ

Vacuum Region 1 (VR¹)

Interstitial Region (IR)

Muffin-tin (MT)

Vacuum Region 2 (VR²)

u<sub>k_{||}G_{||}^{vac}, *u*<sub>k_{||}G_{||}^{vac}: solutions, energy derivatives to vacuum potential at energy parameters *E*^{vac}

</sub></sub>

•
$$G_{\perp} = 2\pi n/\tilde{D}$$

Outline

Theoretical background

- The FLAPW method and the LAPW basis
- Separation of core electrons from valence electrons
- Local orbitals
- Film setups

Obtaining high-presision results

- Semicore states and ghost bands
- Systematic convergence in MT spheres
- Strengths, Challenges, and Features
- Using fleur
- Conclusion

 $\begin{array}{ll} {\cal K}_{\max} & \mbox{reciprocal plane-wave cutoff for LAPW basis} \\ {\cal I}^{\alpha}_{\max} & \mbox{cutoffs for } \mbox{ expansion of LAPW basis in MT spheres} \\ {\cal R}^{\alpha}_{\rm MT} & \mbox{MT radii} \\ {\cal E}^{\alpha}_{\mbox{ ll}} & \mbox{energy parameters} \\ {\cal G}_{\max} & \mbox{reciprocal plane-wave cutoff for density and potential} \\ {\cal D}, \mbox{ \tilde{D}} & \mbox{vacuum boundary for film setups} \end{array}$

... ...

Semicore states and ghost bands

Semicore states and ghost bands – with SCLO

Choice of the energy parameter (fcc Ce)

Systematic convergence in MT spheres (fcc Ce)

Outline

Theoretical background

- The FLAPW method and the LAPW basis
- Separation of core electrons from valence electrons
- Local orbitals
- Film setups
- Obtaining high-presision results
 - Semicore states and ghost bands
 - Systematic convergence in MT spheres
- Strengths, Challenges, and Features
- Using fleur
- Conclusion

Strengths and Challenges for Fleur

Strengths:

- Possibility to produce precise reference results
- Everything where the core electron spectrum is of direct relevance
- Elements including f electrons in valence shell
- Complex magnetism, spin-orbit coupling
 - Example in following talk by Uliana Alekseeva

Challenges in LAPW:

- Complicated expressions due to sophisticated basis
 - Stress tensor
 - Phonons
- Constraint of non-overlapping MT spheres

FLEUR features

- Noncollinear magnetism
- Spin-orbit coupling
- Spin spirals (with generalized Bloch theorem)
- Extraction of parameters for (extended) Heisenberg model
 - exchange coupling parameters, Dzyaloshinskii-Moriya interaction,
 - Magnetic force theorem
- LDA+U, Hybrid functional
- Application of external fields
- EELS

. . .

- Magnetic circular dichroism
- Band unfolding
- Vacuum DOS (for STM images)
- With Fleur-SPEX: GW approximation to MBPT, ...

Using Fleur

- Complex parametrization cannot be performed solely by the user
- Usage of an input generator
 - Requires only basic structural input for the unit cell
 - Generates Fleur input with material-adapted default parameters
- Fleur input file (inp.xml)
 - Can be modified by the user...
 - ...to increase cutoff parameters
 - ...activate special calculation modes
- Automatization with AiiDA
- More on this in the talk by Daniel Wortmann

Conclusion

Discussed:

- LAPW basis, local orbitals, film setups
- Obtaining high-precision results
- Strengths, Challenges, and Features
- Fleur input files

More on www.flapw.de:

- Get the code
- Extensive documentation
- References

