
MaX “Materials Design at the Exascale”, has received funding from the European Union’s Horizon
2020 project call H2020-INFRAEDI-2018-1, grant agreement 824143

Scientific software and libraries for
electronic structure community

MaX webinar, 24 June 2020

Anton Kozhevnikov
Scientific Software &
Libraries Group Lead

CSCS

Shoshana Jakobovits
Software Engineer

CSCS

Marko Kabic
Software Engineer

CSCS

Simon Frasch
Software Engineer

CSCS

Webinar is represented by

Swiss National Supercomputing Centre – CSCS

Piz Daint supercomputer at CSCS

2013 - first installation
Cray XC30: 5272 nodes of 8-core Intel
SandyBridge@2.6GHz + NVIDIA K20X
Peak performance: 6.271 Petaflops

2016 - upgrade
Cray XC50: 5704 nodes of 12-core Intel

Haswell@2.6GHz + NVIDIA P100
Peak performance: 21.230 Petaflops

Material science codes at CSCS

How CSCS can help community in porting scientific applications
to novel architectures?

● CP2K
○ Localized Gaussian basis set
○ Sparse matrix multiplication for O(N) method
○ Dense eigen-solver for diagonalization-based SCF
○ Dense matrix multiplication for RPA calculation
○ FFTs

● Quantum ESPRESSO
○ Delocalized plane-wave basis set
○ FFTs
○ Davidson iterative subspace diagonalisation

■ dense eigen-solver
■ dense linear algebra

Porting scientific codes to GPUs

Scientific community applications are typically:

● monolithic all-in-one Fortran90
● MPI (with OpenMP) implementation
● ignorant of GPU

Usual steps of porting such applications to GPU:

● cleanup and refactor the code
● (probably) change the data layout
● fully utilize CPU threads (this helps to understand the compute-intensive kernels of the

application)
● move compute-intensive kernels to GPU

○ OpenACC
○ OpenMP >= 4.5
○ CUDA with ISO_C_BINDING or Cuda-Fortran
○ OpenCL

Separation of work

Scientific code

Computational

scientists

“Classical” HPC

platform

Domain

scientists

Domain

scientists

Scientific code

Domain-specific

libraries

Architecture

1

Architecture

2

Architecture

N
...

evolve into

CSCS vision: complexity of current and emerging HPC platforms and programming

models should be reflected in the way we develop scientific software.

DBCSR library
Shoshana Jakobovits

COSMA library
Marko Kabic

Motivation

Yet another matrix multiplication?

Motivation

Efforts to achieve communication-optimality:

Evaluation

Evaluation

Portability and Usability

Portability and Usability

Portability and Usability

Portability and Usability

SCALAPACK-wrapper

- Follow the 30 seconds tutorial: https://github.com/eth-
cscs/COSMA#using-cosma-in-30-seconds

https://github.com/eth-cscs/COSMA#using-cosma-in-30-seconds

SCALAPACK-wrapper

- Follow the 30 seconds tutorial: https://github.com/eth-
cscs/COSMA#using-cosma-in-30-seconds

COMPILE COSMA

➔ git clone --recursive

https://github.com/eth-cscs/COSMA cosma

&& cd cosma

➔ mkdir build && cd build

➔ cmake -DCOSMA_BLAS=CUDA

-DCOSMA_SCALAPACK=MKL

-DCMAKE_INSTALL_PREFIX=<install-dir>

..

➔ make -j 8

➔ make install

https://github.com/eth-cscs/COSMA#using-cosma-in-30-seconds
https://github.com/eth-cscs/COSMA

SCALAPACK-wrapper

- Follow the 30 seconds tutorial: https://github.com/eth-
cscs/COSMA#using-cosma-in-30-seconds

COMPILE COSMA

➔ git clone --recursive

https://github.com/eth-cscs/COSMA cosma

&& cd cosma

➔ mkdir build && cd build

➔ cmake -DCOSMA_BLAS=CUDA

-DCOSMA_SCALAPACK=MKL

-DCMAKE_INSTALL_PREFIX=<install-dir>

..

➔ make -j 8

➔ make install

LINK TO COSMA

link to COSMA, before any SCALAPACK

➔ LIBS += -L<install-dir>/lib64

-lcosma_pxgemm

-lcosma -lgrid2grid

-lTiled-MM

-lcublas -lcudart -lrt

include headers

➔ INCS += -I<install-dir>/include

https://github.com/eth-cscs/COSMA#using-cosma-in-30-seconds
https://github.com/eth-cscs/COSMA

SCALAPACK-wrapper

used in CP2K

COMPILE COSMA

➔ git clone --recursive

https://github.com/eth-cscs/COSMA cosma

&& cd cosma

➔ mkdir build && cd build

➔ cmake -DCOSMA_BLAS=CUDA

-DCOSMA_SCALAPACK=MKL

-DCMAKE_INSTALL_PREFIX=<install-dir>

..

➔ make -j 8

➔ make install

LINK TO COSMA

link to COSMA, before any SCALAPACK

➔ LIBS += -L<install-dir>/lib64

-lcosma_pxgemm

-lcosma -lgrid2grid

-lTiled-MM

-lcublas -lcudart -lrt

include headers

➔ INCS += -I<install-dir>/include

https://github.com/eth-cscs/COSMA

SCALAPACK-wrapper

used in CP2K

COMPILE COSMA

➔ git clone --recursive

https://github.com/eth-cscs/COSMA cosma

&& cd cosma

➔ mkdir build && cd build

➔ cmake -DCOSMA_BLAS=CUDA

-DCOSMA_SCALAPACK=MKL

-DCMAKE_INSTALL_PREFIX=<install-dir>

..

➔ make -j 8

➔ make install

LINK TO COSMA

link to COSMA, before any SCALAPACK

➔ LIBS += -L<install-dir>/lib64

-lcosma_pxgemm

-lcosma -lgrid2grid

-lTiled-MM

-lcublas -lcudart -lrt

include headers

➔ INCS += -I<install-dir>/include

user code untouched!

https://github.com/eth-cscs/COSMA

Portability and Usability

Portability and Usability

A B B

SpFFT library
Simon Frasch

SpFFT

SpFFT

28

SpFFT library

Design goals:

● Distributed 3D FFT computation with sparse input

● Resource reuse for transforms of different sizes

● Support for shifted indexing with centered zero-frequency

● Full use of Hermitian symmetry for complex-to-real transforms

Implementation:

● Written in C++11

● Only mandatory dependency: Library providing a FFTW 3.x interface

● Optional parallelization and acceleration with:

○ OpenMP

○ MPI

○ CUDA or ROCm

SpFFT - Data Decomposition

Slab decomposition:

Pencil decomposition:

SpFFT - Data Decomposition

Flexible pencil decomposition Slab decomposition

Advantages:
● Less constraints on the distribution of sparse input data
● Better suited for GPU acceleration

Disadvantages:
● Distribution of dense datta is limited by the size of one dimension

SpFFT uses a mixed decomposition:

SpFFT - Data exchange

Three MPI exchange methods are supported:

● MPI_Alltoall

○ Fixed message sizes

○ Typically best optimized for large number of ranks

● MPI_Alltoallv

○ Adapts to non-uniform data distribution with variable message sizes

● MPI_Alltoallw

○ Manual packing / unpacking of data before exchange can be avoided by using

custom data types for each message

Additional features:

• Optional use of conversion to / from single precision for MPI exchange step

• CUDA aware MPI with GPUDirect to avoid data transfer between host and device

SpFFT - Interface

The interface is based on two constructs:

Grid

• Allocates memory for transforms up to a given maximum size

• Transforms of different sizes can be executed on the same grid, allowing for

memory reuse

Transform

• Associated to a reference counted grid

• Created with frequency (Miller) indices of sparse input data

• For GPU acceleration: Accepts host and device pointers. Output can be

selected to be placed on host or device memory.

Note: No CUDA or ROCm API is exposed to the user.

SpFFT - Example
! Create grid, which allocates necessary resources
spfft_grid_create_distributed(grid, dffts%nr1, dffts%nr2, dffts%nr3,&

dffts%nsp(dffts%mype+1), dffts%my_nr3p,&
SPFFT_PU_HOST, 1, MPI_COMM_WORLD, SPFFT_EXCH_BUFFERED)

! Create transform on grid with Miller indices
spfft_transform_create(transform, grid, SPFFT_PU_HOST, SPFFT_TRANS_C2C,&

dffts%nr1, dffts%nr2, dffts%nr3, dffts%my_nr3p,&
size(mill)/3, SPFFT_INDEX_TRIPLETS, mill)

! Grids are reference counted. Can be safely destroyed, since resources are only freed
! after associated transforms have been destroyed as well.
spfft_grid_destroy(grid)

! Memory for storing real space data is provided by transform.
! Must be translated from a C pointer.
spfft_transform_get_space_domain(transform, SPFFT_PU_HOST, psic_ptr)
call c_f_pointer(psic_ptr, psic, [n])

! Transform nbnd times forward and backwards.
do ib = 1, nbnd, 1

spfft_transform_backward(transform, psi(:,ib), SPFFT_PU_HOST)

! Work on real space data here...

spfft_transform_forward(transform, SPFFT_PU_HOST, hpsi(:,ib), SPFFT_FULL_SCALING)
enddo

! All resources are freed by destroying the only / last transform
spfft_transform_destroy(transform)

SpFFT - Benchmark

Benchmark:
● FFTW is executed with transposed output (only one internal MPI call necessary)
● GPU node: Intel Xeon E5-2690 v3 (12 cores), Nvidia Tesla P100
● Multi-Core node: 2x Intel Xeon E5-2695 v4 (2 x 18 cores)

SpFFT vs QE

Timings with single thread per rank: Multi-thread scaling with two MPI ranks:

Size: 243 x 384 x 576
Density: 34%

SIRIUS library
Anton Kozhevnikov

Motivation for a common plane-wave DFT library

• Many similar full-potential LAPW codes (Exciting, Elk, FLEUR, Wien2k)
• Many similar pseudopotential PW codes (Quantum ESPRESSO, Abinit,

VASP)
• Core DFT functionality is the same (compute total energy, magnetic

moments, stress tensor, forces)
• A lot of common functionality between FP-LAPW and PP-PW methods

Accelerating and writing architecture backends for individual DFT
codes is a waste of resources.

It is much more efficient to focus on the development of a common
DFT functionality and create interfaces to various electronic-structure
codes.

SIRIUS library

SIRIUS is a domain specific library organized as a
collection of C++ classes that abstract away the
different building blocks of PW and LAPW codes.
The library is written in C++11 with MPI, OpenMP
and CUDA/ROCm programming models.
https://github.com/electronic-structure/SIRIUS
https://electronic-structure.github.io/SIRIUS-doc/

git clone --recursive https://github.com/electronic-

structure/SIRIUS.git

mkdir SIRIUS/build

cd SIRIUS/build

cmake .. -DCMAKE_INSTALL_PREFIX=$HOME/local

make -j install

https://github.com/electronic-structure/SIRIUS
https://electronic-structure.github.io/SIRIUS-doc/

Supported functionality

Features

Pseudopotential Full-potential Common

● NC/US/PAW pseudopotentials
● Collinear and non-collinear

magnetism
● Hubbard U correction
● Spin-orbit coupling
● Stress tensor
● Atomic forces
● Verification of S-operator matrix
● Iterative Davidson and exact

diagonalization solvers
● Orbital transformation (wave-

function optimisation) method

● L(A)PW+lo method with
arbitrary number of local
orbitals

● Collinear and non-collinear
magnetism with second
variational approach

● Iterative Davidson and
exact diagonalization
solvers

● Spin-orbit coupling
● Atomic forces

● Python frontend
● Symmetrization of lattice-periodic

functions and on-site matrices (using
symmetries from spglib)

● Generation of k-point mesh using spglib
● Run-time control of the eigenvalue

solvers (Lapack / MAGMA / ScaLAPACK /
ELPA)

● Run-time control of the BLAS provider
(CPU BLAS / cuBlas / cuBlasXt)

SIRIUS library design

SIRIUS

BLAS

LAPACK

ScaLAPACK

ELPA spglib GSL HDF5 libvdwxc

LibXC

CUDA

cuBLAS, cuSolve, cuFFT

ROCm

rocBLAS, rocFFT

Magma

SpFFT

FFTW

QE CP2K i-PI Exciting

DFT_ground_state

Potential Density Band Stress K_point

Wave_functions

Beta_projector
s

Hamiltonian

Field4D Mixer

Periodic_function
Forces

GPU acceleration of Quantum ESPRESSO

https://github.com/electronic-structure/q-e-sirius
• Always in sync with main QE repository
• Used in production at CSCS

https://github.com/electronic-structure/q-e-sirius

PW functionality in CP2K

LiF with UPF or GTH pseudopotentials

&FORCE_EVAL
METHOD SIRIUS
&PW_DFT

&PARAMETERS
ELECTRONIC_STRUCTURE_METHOD pseudopotential
SMEARING_WIDTH 0.025
USE_SYMMETRY true
GK_CUTOFF 6.0
PW_CUTOFF 20.00
ENERGY_TOL 1e-6
NGRIDK 2 2 2

&END PARAMETERS
&END PW_DFT
&DFT

&XC
...

&END XC
&END DFT

&END FORCE_EVAL
&SUBSYS
...
&END SUBSYS
&GLOBAL
...
&END GLOBAL

&SUBSYS
&CELL

A [bohr] 0.0 3.80402 3.80402
B [bohr] 3.80402 0.0 3.80402
C [bohr] 3.80402 3.80402 0.0

&END CELL
&COORD

SCALED
Li 0.0 0.0 0.0
F 0.5 0.5 0.5

&END COORD
&KIND Li

POTENTIAL UPF "Li.pz-s-kjpaw_psl.0.2.1.UPF.json"
&END KIND
&KIND F

POTENTIAL GTH-LDA-q11
&END KIND

&END SUBSYS

CP2K/SIRIUS output example

Charges and magnetic moments

--

total charge : 10.000000

Energy

--

valence_eval_sum : -4.33328910

<rho|V^{XC}> : -8.47838592

<rho|E^{XC}> : -7.00804097

<mag|B^{XC}> : 0.00000000

<rho|V^{H}> : 17.65751990

one-electron contribution : -13.47059366 (Ha), -26.94118732 (Ry)

hartree contribution : 8.82875995

xc contribution : -7.00804097

ewald contribution : -20.48430223

PAW contribution : -4.52435252

Total energy : -36.65852943 (Ha), -73.31705886 (Ry)

band gap (eV) : 9.07701505

Efermi : 0.22500000

iteration : 15, RMS 1.424969998675E-09, energy difference : 6.240623875442E-07

converged after 16 SCF iterations!

ENERGY| Total FORCE_EVAL (SIRIUS) energy (a.u.): -36.658529429377616

CP2K input reference

Full documentation is available here:
https://manual.cp2k.org/cp2k-7_1-branch/CP2K_INPUT/FORCE_EVAL/PW_DFT.html

https://manual.cp2k.org/cp2k-7_1-branch/CP2K_INPUT/FORCE_EVAL/PW_DFT.html

THANKS

Q&A

