SpFFT library

Simon Frasch

SpFFT library

Design goals:
e Distributed 3D FFT computation with sparse input
® Resource reuse for transforms of different sizes
® Support for shifted indexing with centered zero-frequency
® Full use of Hermitian symmetry for complex-to-real transforms

Implementation:

e Writtenin C++11
e Only mandatory dependency: Library providing a FFTW 3.x interface
e Optional parallelization and acceleration with:

o OpenMP

o MPI

o CUDA or ROCm
TRANSITION

SpFFT - Data Decomposition

Slab decomposition: . — '
Pencil decomposition: ' 4_. ' <_I .

SpFFT - Data Decomposition

SpFFT uses a mixed decomposition:

Flexible pencil decomposition Slab decomposition

Advantages:
® Less constraints on the distribution of sparse input data
® Better suited for GPU acceleration
e Typically faster than full pencil decomposition, provided MPI ranks do not

outnumber slabs

Disadvantages:
e Parallelization is limited by the size of a dimension

DRIVING
MAX THE EXASCALE
TRANSITION

SpFFT - Data exchange

Three MPI exchange methods are supported:

e MPIL_Alltoall

o Fixed message sizes
o Typically best optimized for large number of ranks

e MPI_Alltoallv

o Adapts to non-uniform data distribution with variable message sizes

e MPI_Alltoallw

o Manual packing / unpacking of data before exchange can be avoided by using

custom data types for each message

Additional features:

Optional use of conversion to / from single precision for MPI exchange step

[]
CUDA aware MPI with GPUDirect to avoid data transfer between host and device

DRIVING
MAX THE EXASCALE
TRANSITION

SpFFT - Interface

The interface is based on two constructs:
Grid

e Allocates memory for transforms up to a given maximum size
e Transforms of different sizes can be executed on the same grid, allowing for
memory reuse

Transform

e Associated to a reference counted grid

e Created with frequency (Miller) indices of sparse input data

e For GPU acceleration: Accepts host and device pointers. Output can be
selected to be placed on host or device memory.
Note: No CUDA or ROCm API is exposed to the user.

DRIVING
WIX THE EXASCALE
TRANSITION

SpFFT - Example

I Create grid, which allocates necessary resources

spfft_grid_create_distributed(grid, dffts%nri1, dffts%nr2, dffts%nr3,&
dffts%nsp(dffts%mype+1), dffts%my_nr3p,&
SPFFT_PU_HOST, 1, MPI_COMM_WORLD, SPFFT_EXCH_BUFFERED)

I Create transform on grid with Miller indices

spfft_transform_create(transform, grid, SPFFT_PU_HOST, SPFFT_TRANS_C2C, &
dffts%nr1, dffts%nr2, dffts%nr3, dffts%my_nr3p,&
size(mill) /3, SPFFT_INDEX_TRIPLETS, mill)

I Grids are reference counted. Can be safely destroyed, since resources are only freed
| after associated transforms have been destroyed as well.
spfft_grid_destroy(grid)

I Memory for storing real space data is provided by transform.

I Must be translated from a C pointer.
spfft_transform_get_space_domain(transform, SPFFT_PU_HOST, psic_ptr)
call c_f_pointer(psic_ptr, psic, [n])

I Transform nbnd times forward and backwards.
do ib = 1, nbnd, 1
spfft_transform_backward(transform, psi(:,ib), SPFFT_PU_HOST)

I Work on real space data here...

spfft_transform_forward(transform, SPFFT_PU_HOST, hpsi(:,ib), SPFFT_FULL_SCALING)
enddo

I All resources are freed by destroying the only / last transform
spfft_transform_destroy(transform)

DRIVING
THE EXASCALE
TRANSITION

SpFFT - Benchmark

Benchmark:

e FFTW is executed with transposed output (only one internal MPI call necessary)
® GPU node: Intel Xeon E5-2690 v3 (12 cores), Nvidia Tesla P100
e Multi-Core node: 2x Intel Xeon E5-2695 v4 (2 x 18 cores)

Dense transform of size 512 x 512 x 512 on Piz Daint

+ —&— FFTW MPI with Intel MKL (2 x 18 Threads)
‘.\ —#~ GPU (GPUDirect)
A @~ GPU
800 \ =-#-- CPU (12 Threads)
\ —&-- CPU (2 x 18 Threads)
'\+\ —#&- CPU (36 Threads)
600
i
E
)
£
'—
400
200

DRIVING
Nodes THE EXASCALE
TRANSITION

SPFFT vs QEF

Timings with single thread per rank: Multi-thread scaling with two MPI ranks:
QE vs SpFFT with MPI on Piz Daint Multi-Core Partition QE vs SpFFT with 2 MPI ranks and OpenMP enabled on Piz Daint Multi-Core Partition
7
0 —— QF —— QE :
—w— SpFFT —w— SpFFT //’/
E —#— QE with gamma 6 ‘/

SpFFT with gamma /
+ /"
5 X'

_ N | /
s A =
E S\ 2
= v »n
\I\. X o—@ °
+\ \x\ 3 | — -
M .\. o/
6450 \ \x\ /
"‘\.\'\ -
x 2 /
B 7
+ L
\+ 1
11836 72 144 288 576 1 2 4 6 8 10 12 14 16 18
Cores # Threads per process

Size: 243 x 384 x 576
Density: 34%

DRIVING
WIX THE EXASCALE
TRANSITION

