Skip to main content
Home
Home
  • About MaX
    • Goals
    • Organisation
    • MaX in a nutshell
    • People at MaX
    • Codes at MaX
    • Project Repository
    • Publications
    • Job openings
    • Newsletter
    • Communication
    • News & Events
    • MaX 2018-2021
  • Software
    • Codes
    • Features and algorithms
    • Libraries
    • Workflows
  • Exascale
    • Deployments
    • Programming models
    • Co-design
    • Performances
    • Separation of concerns
  • Data
    • Fact & Figures
  • Services
    • MaX Container technology for HPC system
    • MaX Help Desk
    • MaX High level consultancy
    • Simulations on premises and in the cloud
    • Turn-key materials solutions
    • Services to the Industry
    • Facts & Figures
    • FAQ
  • Training
    • Training materials
      • Open Online courses and videolectures
      • Presentations
      • Training material related to the MaX flagship codes
    • List of workshops & schools
    • Training through research in the MaX labs
    • Fact & Figures
  • Contact us
Home
  • About MaX

    About MAX

    MAX (MAterials design at the eXascale) is a European Centre of Excellence which enables materials modelling, simulations, discovery and design at the frontiers of the current and future High Performance Computing (HPC), High Throughput Computing (HTC) and data analytics technologies.

    • Goals
    • Organisation
    • MaX in a nutshell
    • People at MaX
    • Codes at MaX
    • Project Repository
    • Publications
    • Job openings
    • Newsletter
    • Communication
    • News & Events
    • MaX 2018-2021
  • Software

    SOFTWARE

    The software developed by MAX is made available to the whole community in open-source form. In this section you can find our main software output and how to obtain it.
     

    Codes

    Software libraries

    Features and algorithms

    Workflows

    Impact of MAX flagship codes

    • Codes
    • Features and algorithms
    • Libraries
    • Workflows
  • Exascale

    EXASCALE

    MAX addresses the challenges of porting, scaling, and optimising material science application codes for the peta- and exascale platforms in order to deliver best code performance and improve users productivity on the upcoming architectures.

    Programming models

    Performances

    Data on demand

    Co-design

    Data on demand

    Separation of concerns

    • Programming models
    • Co-design
    • Deployments
    • Performances
    • Separation of concerns
  • Data

    DATA

    MAX is committed in supporting data stewardship by adhering to the FAIR-sharing principles. High-quality data is provided both in the format of curated scientific results and raw data, focusing on the tracking of provenance to ensure the full reproducibility of results.

    Data at MaX

    Data at MaX

    Complete archived data

    Curated data

    Data on demand

    Data on demand

    FAIR data

    FAIR data

    Facts and Figures

    Facts and Figures

    • Fact & Figures
  • Services

    SERVICES

    MAX develops and offers services and technical support dedicated to the general public and the expert users from both industry and academia.

    MaX Helpdesk

    Help Desk

    max-high-level-consultancy-materials-science

    High level consultancy

    Turn-key materials solutions

    Turn-key materials solutions

    MaX Container technology for HPC system

    Container technology for HPC system

    Simulations on premises and in the cloud

    Simulations on premises and in the cloud

    Services to the Industry

    Services to the Industry

    Facts and Figures

    Facts and Figures

    FAQ

    FAQs

    • MaX Container technology for HPC system
    • MaX Help Desk
    • MaX High level consultancy
    • Simulations on premises and in the cloud
    • Turn-key materials solutions
    • Services to the Industry
    • Facts & Figures
    • FAQ
  • Training

    TRAINING

    MAX offers integrated training and education in the field of HPC developments and in the computational materials science domain, including workshops and schools, contributions to University courses and training through research in the CoE labs.

    List of workshops & schools

    Data on demand

    Training through research in the MaX labs

    Training materials

    Facts and Figures

    Facts and Figures

    • Training materials
      • Open Online courses and videolectures
      • Training material related to the MaX flagship codes
      • Presentations
    • List of workshops & schools
      • Quantum Espresso Targeting Accelerators
    • Training through research in the MaX labs
    • Fact & Figures
  • Contact us
  • About MaX
    • Goals
    • Organisation
    • MaX in a nutshell
    • People at MaX
    • Codes at MaX
    • Project Repository
    • Publications
    • Job openings
    • Newsletter
    • Communication
    • News & Events
    • MaX 2018-2021
  • Software
    • Codes
    • Features and algorithms
    • Libraries
    • Workflows
  • Exascale
    • Deployments
    • Programming models
    • Co-design
    • Performances
    • Separation of concerns
  • Data
    • Fact & Figures
  • Services
    • MaX Container technology for HPC system
    • MaX Help Desk
    • MaX High level consultancy
    • Simulations on premises and in the cloud
    • Turn-key materials solutions
    • Services to the Industry
    • Facts & Figures
    • FAQ
  • Training
    • Training materials
      • Open Online courses and videolectures
      • Presentations
      • Training material related to the MaX flagship codes
    • List of workshops & schools
    • Training through research in the MaX labs
    • Fact & Figures
  • Contact us

Science & MaX

Home / Science & MaX / Science & MaX
All
Quantum ESPRESSO
Siesta
Yambo
CP2K
BigDFT
AiiDA

HP – A code for the calculation of Hubbard parameters using density-functional perturbation theory

Timrova, I., Marzaria, N., and Cococcioni, M.

Computer Physics Communications, 279, 108455 DOI: https://doi.org/10.1016/j.cpc.2022.108455
  • Quantum ESPRESSO

Engineering of metal-MoS2 contacts to overcome Fermi level pinning

P. Khakbaz, F. Driussi, P. Giannozzi, A. Gambi D. Lizzit, and D. Esseni

Solid-State Electronics 194, 108378 (2022) DOI: https://doi.org/10.1016/j.sse.2022.108378
  • Quantum ESPRESSO

Viscosity in water from first-principles and deep-neural-network simulations

Cesare Malosso, Linfeng Zhang, Roberto Car, Stefano Baroni, and Davide Tisi

npj Computational Materials 8, 139 (2022) DOI: https://doi.org/10.1038/s41524-022-00830-7
  • Quantum ESPRESSO

Microscopic picture of paraelectric perovskites from structural prototypes

Michele Kotiuga, Samed Halilov, Boris Kozinsky, Marco Fornari, Nicola Marzari, and Giovanni Pizzi

Phys. Rev. Research 4, L012042 (2022) DOI: https://doi.org/10.1103/PhysRevResearch.4.L012042
  • Quantum ESPRESSO
  • AiiDA

Fast All-Electron Hybrid Functionals and Their Application to Rare-Earth Iron Garnets

M. Redies, G. Michalicek, J. Bouaziz, C. Terboven, M. S. Müller, S. Blügel, and D. Wortmann

Front. Mater. 9:851458 (2022) DOI: https://doi.org/10.3389/fmats.2022.851458
  • Quantum ESPRESSO
  • AiiDA

Temperature- and vacancy-concentration-dependence of heat transport in Li3ClO from multi-method numerical simulations

Paolo Pegolo, Stefano Baroni, and Federico Grasselli

npj Comput Mater 8, 24 (2022) DOI: https://doi.org/10.1038/s41524-021-00693-4
  • Quantum ESPRESSO

Thermal and Tidal Evolution of Uranus with a Growing Frozen Core

L. Stixrude, S. Baroni, and F. Grasselli

Planet. Sci. J. 2 222 DOI: https://doi.org/10.3847/PSJ/ac2a47
  • Quantum ESPRESSO

Subpicosecond metamagnetic phase transition driven by non-equilibrium electron dynamics

F. Pressacco, D. Sangalli, V. Uhlíř, D. Kutnyakhov, J. A. Arregi, S. Y. Agustsson, G. Brenner, H. Redlin, M. Heber, D. Vasilyev, J. Demsar, G. Schönhense, M.o Gatti, A. Marini, W.Wurth,  and F.Sirotti

Nature Communications 12, 5088 DOI: https://www.nature.com/articles/s41467-021-25347-3
  • Quantum ESPRESSO
  • Yambo

Invariance principles in the theory and computation of transport coefficients

F. Grasselli and S. Baroni

Eur. Phys. J. B 94, 160 DOI: https://doi.org/10.1140/epjb/s10051-021-00152-5
  • Quantum ESPRESSO

Ultrafast Hot Phonon Dynamics in MgB2 Driven by Anisotropic Electron-Phonon Coupling

D. Novko, F. Caruso, C. Draxl, and E. Cappelluti

Phys. Rev. Lett. 124, 077001 (2020) DOI: 10.1103/PhysRevLett.124.077001
  • Quantum ESPRESSO

Inelastic Electron Tunneling in 2H-TaxNb1-xSe2 Evidenced by Scanning Tunneling Spectroscopy

X. Y. Hou, F. Zhang, X. H. Tu, Y. D. Gu, M. D. Zhang, J. Gong, Y. B. Tu, B. T. Wang, W. G. Lv, H. M. Weng, Z. A. Ren, G. F. Chen, X. D. Zhu, N. Hao, and L. Shan

Phys. Rev. Lett. 124, 106403 (2020) DOI: 10.1103/PhysRevLett.124.106403
  • Quantum ESPRESSO

Superconductivity in Compression-Shear Deformed Diamond

C. Liu, X. Q. Song, Q. Li, Y. M. Ma, and C. F. Chen

Phys. Rev. Lett. 124, 147001 (2020) DOI: 10.1103/PhysRevLett.124.147001
  • Quantum ESPRESSO

Ultrafast Electron Correlations and Memory Effects at Work: Femtosecond Demagnetization in Ni

S. R. Acharya, V. Turkowski, G. P. Zhang, and T. S. Rahman

Phys. Rev. Lett. 125, 017202 (2020) DOI: 10.1103/PhysRevLett.125.017202
  • Quantum ESPRESSO

Ultrafast charge ordering by self-amplified exciton-phonon dynamics in TiSe2

C. Lian, S. J. Zhang, S. Q. Hu, M. X. Guan, and S. Meng

Nat Commun 11, 43 (2020) DOI: 10.1038/s41467-019-13672-7
  • Quantum ESPRESSO

Universal slow plasmons and giant field enhancement in atomically thin quasi-two-dimensional metals

F. H. da Jornada, L. D. Xian, A. Rubio, and S. G. Louie

Nat Commun 11, 1013 (2020) DOI: 10.1038/s41467-020-14826-8
  • Quantum ESPRESSO

Efficient strain modulation of 2D materials via polymer encapsulation

Z: W. Li, Y. W. Lv, L. W. Ren, J. Li, L. A. Kong, Y. J. Zeng, Q. Y. Tao, R. X. Wu, H. F. Ma, B. Zhao, D. Wang, W. Q. Dang, K. Q. Chen, L. Liao, X. D. Duan, F. Duan, and Y. Liu, Y

Nat Commun 11, 1151 (2020) DOI: 10.1038/s41467-020-15023-3
  • Quantum ESPRESSO

Heterobilayers of 2D materials as a platform for excitonic superfluidity

S. Gupta, A. Kutana, and B. I. Yakobson

Nat Commun 11, 2989 (2020) DOI: 10.1038/s41467-020-16737-0
  • Quantum ESPRESSO

Collective dipole effects in ionic transport under electric fields

N. Salles, L. Martin-Samos, S. de Gironcoli, L. Giacomazzi, M. Valant, A. Hemeryck, P. Blaise, B. Sklenard,  and N. Richard

Nat Commun 11, 3330 (2020) DOI: 10.1038/s41467-020-17173-w
  • Quantum ESPRESSO

Exciton-driven change of phonon modes causes strong temperature dependent bandgap shift in nanoclusters

F. Muckel, S. Lorenz, J. Yang, T. A. Nugraha, E. Scalise, T. Hyeon, S. Wippermann, and G. Bacher

Nat Commun 11, 4127 (2020) DOI: /s41467-020-17563-0
  • Quantum ESPRESSO

A HfC nanowire point electron source with oxycarbide surface of lower work function for high-brightness and stable field-emission

S. Tang, J. Tang, JT. W. Chiu, W. Hayami, J. Uzuhashi, T. Ohkubo, F. Uesugi, M. Takeguchi, M. Mitome, and L. C. Qin

Nano Res. 13, 1620–1626 (2020) DOI: 10.1007/s12274-020-2782-0
  • Quantum ESPRESSO

Anharmonicity and Doping Melt the Charge Density Wave in Single-Layer TiSe2

J. Q. S. Zhou, L. Monacelli, R. Bianco, I. Errea, F. Mauri, and M. Calandra

Nano Lett. 20, 7, 4809–4815 (2020) DOI: 10.1021/acs.nanolett.0c00597
  • Quantum ESPRESSO

Superconductivity in predicted two dimensional XB6 (X = Ga, In)

L. Yan, T. Bo, P. F. Liu, L. J. Zhou, J. R. Zhang, M. H. Tang, Y. G. Xiao, and B. T. Wang

J. Mater. Chem. C 5 (2020) DOI: 10.1039/C9TC05783H
  • Quantum ESPRESSO

Prediction of high carrier mobility for a novel two-dimensional semiconductor of BC6N: first principles calculations

L. B. Shi, M. Yang, S. Cao, Q. You, Y. Q. Zhang, M. Qi, K. C. Zhang, and P. Qian

J. Mater. Chem. C 17 (2020) DOI: 10.1039/D0TC00549E
  • Quantum ESPRESSO

The origin and nature of killer defects in 3C-SiC for power electronic applications by a multiscale atomistic approach

E. Scalise, L. Barbisan, A. Sarikov, F. Montalenti,L. Miglio, and A. Marzegalli

J. Mater. Chem. C 25 (2020) DOI: 10.1039/D0TC00909A
  • Quantum ESPRESSO

Magneto-optical response of chromium trihalide monolayers: chemical trends

A. Molina-Sanchez, G. Catarina, D. Sangalli, and J. Fernandez-Rossier

J. Mater. Chem. C 26 (2020) DOI: 10.1039/D0TC01322F
  • Quantum ESPRESSO

Insights into the fabrication and structure of plutonium pyrochlores

S. Finkeldei, M. C. Stennett, P. M. Kowalski, Y.  Ji, E. de Visser-Tynova, N. C. Hyatt, D. Bosbach, and F. Brandt

J. Mater. Chem. A 5 (2020) DOI: 10.1039/C9TA05795A
  • Quantum ESPRESSO

Is Cs2TiBr6 a promising Pb-free perovskite for solar energy applications?

J. Euvrard, X. M. Wang, T. Y. Li, Y. F. Yan, and D. B. Mitzi

J. Mater. Chem. A 7 (2020) DOI: 10.1039/C9TA13870F
  • Quantum ESPRESSO

Multidimensional Na4VMn0.9Cu0.1(PO4)(3)/C cotton-candy cathode materials for high energy Na-ion batteries

V. Soundharrajan, M. H. Alfaruqi, S. Lee, B. Sambandam, S. Kim, S. Kim, V. Mathew, D. T. Pham, J. Y. Hwang, Y. K.Sun, and J. Kim

J. Mater. Chem. A 24 (2020) DOI: 10.1039/D0TA03767B
  • Quantum ESPRESSO

Addressing the OER/HER imbalance by a redox transition-induced two-way electron injection in a bifunctional n-p-n electrode for excellent water splitting

H. Anwer and J. W. Park

J. Mater. Chem. A 26 (2020) DOI: 10.1039/D0TA03392H
  • Quantum ESPRESSO

Electronic structure of the parent compound of superconducting infinite-layer nickelates

M. Hepting, D. Li, C.J. Jia, H. Lu, E. Paris, Y. Tseng, X. Feng, M. Osada, E. Been, Y. Hikita, Y.D. Chuang, Z. Hussain, K.J. Zhou, A. Nag, M. Garcia-Fernandez, M. Rossi, H.Y. Huang, D.J. Huang, Z.X. Shen, T. Schmitt, H.Y. Hwang, B. Moritz, J. Zaanen, T.P. Devereaux, and W.S. Lee

Nature Materials 19, 381–385 (2020) DOI: 10.1038/s41563-019-0585-z
  • Quantum ESPRESSO

Nanoconfinement of Molecular Magnesium Borohydride Captured in a Bipyridine-Functionalized Metal-Organic Framework

A. Schneemann, L.F. Wan, A.S. Lipton, Y.S. Liu, J.L. Snider, A.A. Baker, J.D. Sugar, C.D. Spataru, J.H. Guo, T.S. Autrey, M. Jorgensen, T.R. Jensen, B.C. Wood, M.D. Allendorf, and V. Stavila

10.1021/acsnano.0c03764 https://www.max-centre.eu/10.1021/acsnano.0c03764
  • Quantum ESPRESSO

Zirconium nitride catalysts surpass platinum for oxygen reduction

Y. Yuan, J.H. Wang, S. Adimi, H.J. Shen, T. Thomas, R.G. Ma, J.P. Attfield, and M.H. Yang

Nature Materials 19, 282–286 (2020) DOI: 10.1038/s41563-019-0535-9
  • Quantum ESPRESSO

Intrinsic quantum confinement in formamidinium lead triiodide perovskite

A.D. Wright, G. Volonakis, J. Borchert, C.L. Davies, F. Giustino, M.B. Johnston, and L.M. Herz

Nature Materials 19, 1201–1206 (2020) DOI: 10.1038/s41563-020-0774-9
  • Quantum ESPRESSO

Potassium Nickel Iron Hexacyanoferrate as Ultra-Long-Life Cathode Material for Potassium-Ion Batteries with High Energy Density

S.K. Chong, J. Yang, L. Sun, S.W. Guo, Y.N. Liu, and H.K. Liu

ACS NANO 14, 8, 9807–9818 (2020) DOI: 10.1021/acsnano.0c02047
  • Quantum ESPRESSO

Achieving Fast and Durable Lithium Storage through Amorphous FeP Nanoparticles Encapsulated in Ultrathin 3D P-Doped Porous Carbon Nanosheets

Z.M. Zheng, H.H. Wu, H.D. Liu, Q.B. Zhang, X. He, S.C. Yu, V. Petrova, J. Feng, R. Kostecki, P. Liu, D.L. Peng, M.L. Liu, and M.S. Wang

ACS NANO 14, 8, 9545–9561 (2020) DOI: 10.1021/acsnano.9b08575
  • Quantum ESPRESSO

Chemical gradients in human enamel crystallites

K.A. DeRocher, P.J.M. Smeets, B.H. Goodge, M.J. Zachman, P.V. Balachandran, L.  Stegbauer, M.J. Cohen, L.M. Gordon, J.M. Rondinelli, L.F. Kourkoutis, and D. Joester

Nature 583, 66–71 (2020) DOI: 10.1038/s41586-020-2433-3
  • Quantum ESPRESSO

Chirality-induced relaxor properties in ferroelectric polymers

Y. Liu, B. Zhang, W.H. Xu, A. Haibibu, Z.B. Han, W.C. Lu, J. Bernholc, and Q. Wang

Nature Materials 19, 1169–1174 (2020) DOI: 10.1038/s41563-020-0724-6
  • Quantum ESPRESSO

High-Fidelity Transfer of Chemical Vapor Deposition Grown 2D Transition Metal Dichalcogenides via Substrate Decoupling and Polymer/Small Molecule Composite

P.J. Wang, S.P. Song, A. Najafi, C. Huai, P.H. Zhang, Y.L. Hou, S.M. Huang, and H. Zeng

ACS NANO 14, 6, 7370–7379 (2020) DOI: 10.1021/acsnano.0c02838
  • Quantum ESPRESSO

Iron-based binary ferromagnets for transverse thermoelectric conversion

A. Sakai, S. Minami, T. Koretsune, T.S. Chen, T. Higo, Y.M. Wang, T. Nomoto, M. Hirayama, S. Miwa, D. Nishio-Hamane, F. Ishii, R. Arita, and S. Nakatsuji

Nature 581, 53–57(2020) DOI: 10.1038/s41586-020-2230-z
  • Quantum ESPRESSO

Strongly correlated electrons and hybrid excitons in a moire heterostructure

Y. Shimazaki, I. Schwartz, K.Watanabe, T.  Taniguchi, M. Kroner, and A. Imamoglu

Nature 580, 472–477 (2020) DOI: 10.1038/s41586-020-2191-2
  • Quantum ESPRESSO

Engineering Edge States of Graphene Nanoribbons for Narrow-Band Photoluminescence

C.X. Ma, Z.C. Xiao, A.A. Puretzky, H. Wang, A. Mohsin, J.S. Huang, L.B. Liang, Y.D. Luo, B.J. Lawrie, G. Gu, W.C. Lu, K.L. Hong, J. Bernholc, and A.P. Li

ACS NANO 14, 4, 5090–5098 (2020) DOI: 10.1021/acsnano.0c01737
  • Quantum ESPRESSO

Sub-Angstrom Characterization of the Structural Origin for High In-Plane Anisotropy in 2D GeS2

X.D. Wang, J.L. Tan, C.Q. Han, J.J. Wang, L. Lu, H.C. Du, C.L. Jia, V.L. Deringer, J. Zhou, and W. Zhang

ACS NANO 14, 4, 4456–4462 (2020) DOI: 10.1021/acsnano.9b10057
  • Quantum ESPRESSO

Strongly Coupled Coherent Phonons in Single-Layer MoS2

C. Trovatello, H.P.C. Miranda, A. Molina-Sanchez, R. Borrego-Varillas, C. Manzoni, L. Moretti, L. Ganzer, M. Maiuri, J.J. Wang, D. Dumcenco, A. Kis, L. Wirtz, A. Marini, G. Soavi, and A.C. Ferrari

ACS NANO 14, 5, 5700–5710 (2020) DOI: 10.1021/acsnano.0c00309
  • Quantum ESPRESSO

Achieving Minimal Heat Conductivity by Ballistic Confinement in Phononic Metalattices

W.N. Chen, D. Talreja, D. Eichfeld, P. Mahale, N.N. Nova, H.Y. Cheng, J.L. Russell, S.Y. Yu, N. Poilvert, G. Mahan, S.E. Mohney, V.H. Crespi, T.E. Mallouk, J.V. Badding, B. Foley, V. Gopalan, and I. Dabo

ACS NANO 14, 4, 4235–4243 (2020) DOI: 10.1021/acsnano.9b09487
  • Quantum ESPRESSO

Universal In Situ Substitutional Doping of Transition Metal Dichalcogenides by Liquid-Phase Precursor-Assisted Synthesis

T.Y. Zhang, K. Fujisawa, F. Zhang, M.Z. Liu, M.C. Lucking, R.N. Gontijo, Y. Lei, H. Liu, K. Crust, T. Granzier-Nakajima, H. Terrones, A.L. Elias, and  M. Terrones

ACS NANO 14, 4, 4326–4335 (2020) DOI: 10.1021/acsnano.9b09857
  • Quantum ESPRESSO

Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy

N. Briggs, B. Bersch, Y.X. Wang, J. Jiang, R.J. Koch, N. Nayir, K. Wang, M. Kolmer, W. Ko, A.D. Duran, S. Subramanian, C.Y. Dong, J. Shallenberger, M.M. Fu, Q. Zou, Y.wW Chuang, Z. Gai, and A.P. Li

Nature Materials 19, 637–643 (2020) DOI: 10.1038/s41563-020-0631-x
  • Quantum ESPRESSO

Molecular-Scale Characterization of Photoinduced Charge Separation in Mixed-Dimensional InSe-Organic van der Waals Heterostructures

S.W. Li, C.M. Zhong, A. Henning, V.K. Sangwan, Q.F. Zhou, X.L. Liu, M.S. Rahn, S.A. Wells, H.Y. Park, J. Luxa, Z. Sofer, A. Facchetti, P. Darancet, T.J. Marks, L.J. Lauhon, E.A. Weiss, and M.C. Hersam

ACS NANO 14, 3, 3509–3518 (2020) DOI: 10.1021/acsnano.9b09661
  • Quantum ESPRESSO

Room Temperature Commensurate Charge Density Wave on Epitaxially Grown Bilayer 2H-Tantalum Sulfide on Hexagonal Boron Nitride

W. Fu, J.S. Qiao, X.X. Zhao, Y. Chen, D.Y. Fu, W. Yu, K. Leng, P. Song, Z. Chen, T. Yu, S.J. Pennycook, S.K. Quek, and L.P. Loh

ACS NANO 14, 4, 3917–3926 (2020) DOI: 10.1021/acsnano.0c00303
  • Quantum ESPRESSO

Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride

I. Errea, F. Belli, L. Monacelli, A. Sanna, T. Koretsune, T. Tadano, R. Bianco, M. Calandra, R. Arita, F. Mauri, and J.A. Flores-Livas

Nature 578, 66–69(2020) DOI: 10.1038/s41586-020-1955-z
  • Quantum ESPRESSO

Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes

R.A. House, U. Maitra, M.A. Pérez-Osorio, J.G. Lozano, L. Jin, J.W. Somerville, L.C. Duda, A. Nag, A. Walters, K.J. Zhou, M.R. Roberts, and P.G. Bruce 

Nature 577, 502–508 (2020) DOI: 10.1038/s41586-019-1854-3
  • Quantum ESPRESSO

Kinetic Control of Morphology and Composition in Ge/GeSn Core/Shell Nanowires

S. Assali, R. Bergamaschini, E. Scalise, M.A. Verheijen, M. Albani, A. Dijkstra, A. Li, S. Koelling, E.P.A.M. Bakkers, F. Montalenti, and L. Miglio

ACS NANO 14, 2, 2445–2455 (2020) DOI: 10.1021/acsnano.9b09929
  • Quantum ESPRESSO

Synthesis of a Hybrid Nanostructure of ZnO-Decorated MoS2 by Atomic Layer Deposition

I.K. Oh, W.H. Kim, L. Zeng, J. Singh, D. Bae, A.J.M. Mackus, J.G. Song, S. Seo, B. Shong, H. Kim, and S.F. Bent

ACS Nano 14, 2, 1757–1769 (2020) DOI: 10.1021/acsnano.9b07467
  • Quantum ESPRESSO

Fatigue of graphene

T. Cui, S. Mukherjee, P.M. Sudeep, G. Colas, F. Najafi, J. Tam, P.M. Ajayan, C.V. Singh, Y. Sun, and T. Filleter

Nature Materials 19, 405–411 (2020) DOI: 10.1038/s41563-019-0586-y
  • Quantum ESPRESSO

Lateral Heterostructure Field-Effect Transistors Based on Two-Dimensional Material Stacks with Varying Thickness and Energy Filtering Source

E.G. Marin, D. Marian, M. Perucchini, G. Fiori, and G. Iannaccone

ACS Nano 14, 2, 1982–1989 (2020) DOI: 10.1021/acsnano.9b08489
  • Quantum ESPRESSO

A Mechanistic Analysis of Phase Evolution and Hydrogen Storage Behavior in Nanocrystalline Mg(BH4)(2) within Reduced Graphene Oxide

S. Jeong, T.W. Heo, J. Oktawiec, R.P.Shi, S. Kang, J.L. White, A. Schneemann, E.W. Zaia,L.W.F. Wan, K.G. Ray, Y.S. Liu, V. Stavila, J.H. Guo, J. R. Long, B.C. Wood, and J.J. Urban

ACS NANO 14, 2, 1745–1756 (2020) DOI: 10.1021/acsnano.9b07454
  • Quantum ESPRESSO

Perfluorinated Self-Assembled Monolayers Enhance the Stability and Efficiency of Inverted Perovskite Solar Cells

C.M. Wolff, L. Canil, C. Rehermann, N.N. Linh, F.S. Zu, M. Ralaiarisoa, P. Caprioglio, L. Fiedler, M. Stolterfoht, S. Kogikoski, I. Bald,N. Koch, E.L. Unger,  T. Dittrich, A. Abate, and D. Neher

ACS Nano 14, 2, 1445–1456 (2020) DOI: 10.1021/acsnano.9b03268
  • Quantum ESPRESSO
Home

  • MAX Centre of Excellence
  • c/o CNR NANO
  • via Campi 213A
  • I-41125 Modena
  • ph +39 059 2055629
  • email: info@max-centre.eu
  • communication@max-centre.eu
SITEMAP
  • About MAX
  • SOFTWARE
  • EXASCALE
  • DATA
  • SERVICES
  • TRAINING
  • CONTACT US
INFORMATION
  • Privacy Policy
  • Terms and Conditions
Connect with us

©2023-MAX.All rights reserved.Privacy PolicyTerms of Service


MaX - Materials design at the Exascale has received funding from the European High Performance Computing Joint Undertaking and Participating Countries in Project (Czechia, France, Germany, Italy, Slovenia and Spain) under grant agreement no. 101093374.

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European High Performance Computing Joint Undertaking. Neither the European Union nor the granting authority can be held responsible for them.

© Copyright 2023